Lista 3

Dinâmica II - 2014.2

Professor: Thiago Ritto(tritto@mecanica.ufrj.br) Monitor: Thomás Arévalo(thomas@poli.ufrj.br)

1. Um carro está andando por uma estrada com raio r, de forma que seu centro de massa tem velocidade constante v_G . Escreva as equações de movimento do carro em relação aos eixos x, y e z. Tome como dados o tensor de inércia do carro e qualquer outro dado necessário.

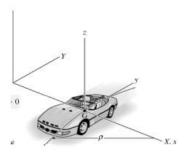


Figura 1: Figura da questão 1.

2. A barra fina tem massa m_{barra} e tamanho total L. Somente metade da barra está visível na figura 2. Ela rotaciona ao redor de sua metade com velocidade angular constante $\dot{\theta}$, enquanto a mesa gira com velocidade angular ω . Determine os momentos que atuam na barra se $m_{barra} = 0, 8kg$, L = 150mm, $\dot{\theta} = 6rad/s$ e $\omega = 2rad/s$.

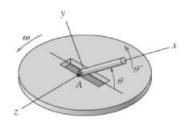


Figura 2: Figura da questão 2.

3. O giroscópio de brinquedo consiste em um rotor R que é preso a uma armação de massa desprezível. Se for constatado que a armação gira ao redor do ponto O com velocidade angular $\omega_p = 2rad/s$, determine a velocidade angular do rotor ω_r . Sabe-se que a barra OA move-se somente no plano horizontal. Dados: massa do rotor M=0,2kg, raio de giração do rotor $K_{OA}=20mm,~a=30mm$.

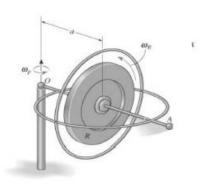


Figura 3: Figura da questão 3.

4. O pêndulo cônico consiste em uma barra de massa m e tamanho L que é suportada por um pino no ponto A. Se o pino é submetido a uma rotação ω , determine o ângulo θ que a barra faz com a vertical.

Figura 4: Figura da questão 4.

5. O motor mostrado na figura possui massa M e raio de giração K_z ao redor do eixo z. O eixo do motor é apoiado nos pontos A e B e gira com velocisade angular constante ω_s , enquanto a estrutura gira com velocidade angular ω_y . Determine o momento que a estrutura aplica no eixo por causa das forças aplicadas em A e B, devido ao movimento.

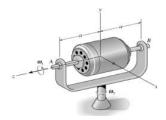


Figura 5: Figura da questão 5.