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Abstract. Structure and fluid models need to be combined, or coupled, when problems of fluid-
structure interaction (FSI) are addressed. We first present the basic knowledge required
for building and then evaluating a simple coupling. The approach proposed is to con-
sider a dedicated solver for each of the two physical systems involved. We illustrate this
approach by examining the interaction between a gas contained in a one-dimensional cham-
ber closed by a moving piston attached to an external and fixed point with a spring. A
single model is introduced for the structure, while three models of increasing complexity
are proposed for the fluid flow solver. The most complex fluid flow model leads us to
the arbitrary Lagrangian Eulerian (ALE) approach. The pros and cons of each model are
discussed. The computer implementations of the structure model, the fluid model, and the
coupling use MATLAB scripts, downloadable from either http://www.utc.fr/∼elefra02/ifs
or http://www.hds.utc.fr/∼boufflet/ifs.
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1. Introduction. Easy and inexpensive access to computing capacities that would
have been unthinkable a few years ago has awakened an interest in fluid-structure in-
teraction (FSI). This branch of mechanics looks at the nonstationary coupling between
a fluid flow and a flexible mechanical structure. The nonstationary aspect is due to the
exchange of momentum and energy that occurs during this coupling process. There
is no guarantee that stationary equilibrium conditions will be perfectly satisfied: tur-
bulence and the dynamics of the structure may, for example, have an impact. The
interaction between the sail of a boat or a plane and the surrounding aerodynamic
flow, between a bridge and the wind (cf. the tragic destruction of the Tacoma Narrows
Bridge in 1940), and between vessels and blood flows are all practical and challenging
examples of FSI [17].

The general equation for FSI results from applying the fundamental principle of
dynamics (FPD), or Newton’s second law, to the mechanical system

(1.1) m�Γ =
∑
forces

�Fi,
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Fig. 1.1 Principle of FSI.

with m the system mass, �Γ the acceleration vector, and �Fi the applied forces (e.g.,
gravity, aerodynamics). A simple approach consists in associating a specialized solver
with each part of the equation, using a coupling technique to provide the equality
term, thus (1.1) can be broken down as follows:

Left term: computed with a structure solver.
Right term: computed with a fluid flow solver.
Equality: a coupling scheme to update common data between the solvers.

With this kind of coupling we need to identify the common data that are input and
output for each of the solvers. In the case of an FSI calculation, the data exchanged
correspond to the parietal pressure and the position and velocity field of the mechan-
ical system (see Figure 1.1).

Historically, numerical models were first used for studying the elastic behavior
of flexible structures. Fluid flow computations are more complex, owing to convec-
tive and turbulence effects, for example. Different approximation levels can be used,
according to the level of precision required. In all cases, caution is necessary when
coupling structure and fluid solvers. Mass, momentum, and energy conservation must
be respected between the terms of (1.1); this is not automatically the case when dis-
tinct solvers are used to compute the left and right terms. These criteria provide the
main basis for checking the quality of FSI calculations.

Our aim is to provide a basic but solid grasp of the numerics underlying the
physics of FSI. Different fluid models are considered and compared. We shall be using
the following application as an illustration: the interaction between a gas contained
in a one-dimensional (1D) chamber closed by a moving piston (see Figure 2.1).

Solving the problem will require the following:
1. A structural model to solve the dynamics of the piston. At any given time

the input is the fluid pressure exerted on its section by the enclosed air, and
the outputs are the piston’s position and velocity.

2. A fluid flow model to calculate the changing pressure on the piston. The in-
puts are the piston’s position and velocity, and the output is the fluid pressure.

Solving any physical problem using numerical tools on a computer is part of a more
general process that can be summarized as follows:

1. Constructing a physical model : this consists of listing the unknown variables,
with the aims of defining the geometry of the system to be studied, the
boundary conditions, and the physical properties, and of establishing simpli-
fying hypotheses (e.g., stationary or not, 1, 2, or 3 dimensions, and the type
of physics—solids, fluid mechanics, or thermics) [3].

2. Constructing the mathematical model : this is the mathematical formulation.
of the relations governing the mechanical equilibrium [7].

3. Constructing the numerical model using finite difference, finite volume, or
finite element methods, for example [8]. The numerical model consists of a
system of algebraic equations to be solved [6].

4. Developing a computer model in order to solve the numerical model with a
large number of unknowns [1].
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Each step of this process deals with the same problem, but each uses its own language.
What is called pressure in the physical model is denoted by the variable p(x, t) in
the mathematical model, by the nodal indexed variable pn

i (located at the discrete
xi position at indexed time n) in the numerical model, and ultimately by a set of
memory addresses in the computer model.

Three fluid models of increasing complexity are considered: the classical steady
state gas law with the adiabatic assumption [21], the piston analogy [2], and the gen-
eral equations governing a 1D compressible flow based on the finite element method.
In order to check the quality of coupling and to compare the different models, indica-
tors of mass, momentum, and energy conservation are systematically calculated. The
computer model consists of scripts written in the MATLAB1 language, downloadable
from the personal web pages of both authors.

The following three sections present the physical, mathematical, and numerical
models, respectively. Section 5 describes the mass, momentum, and energy conser-
vation criteria used to evaluate the quality of the coupling. In section 6 we briefly
present the computer model. We comment on results and list the pros and cons for
each fluid model in section 7. A final section concludes this paper.

The paper requires a basic knowledge of
• mathematical techniques including differential equations and linear algebra [6,

7],
• the FPD and energy interpretation [18, 19],
• thermodynamics [24],

and master-level knowledge of
• concepts and equations in fluid mechanics [25],
• the finite difference method for time discretization [27],
• the finite element method (in 1D) for space discretization [8].

2. Physical Model: Description of the Application. As illustrated in Figure 2.1
we consider a gas contained in a 1D chamber [23], closed on its right-hand side by a
moving piston and on its left by a fixed wall. The piston is of mass mp and attached
to an external fixed point with a spring (of rigidity kp). The spring is defined by three
different lengths, namely, unstretched (Lso), at rest under pressure (Lse), and at a
given time t during the FSI process (Ls(t)). The current displacement, velocity, and
acceleration of the piston are, respectively, given by u(t), u̇(t), and ü(t) with regard
to its position at rest.

h Gas
�n

Lo

0 u(t)

x, �ı

mp, kp, Lso

Ls(t)

L(t) Lse

Fig. 2.1 A gas enclosed in a chamber with a moving piston.

1Scientific programming language developed by The MathWorks.
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The contained gas is air. All fluid variables are taken to be uniform for any section
of the chamber (1D assumption) and are consequently only x- and t-dependent. The
fluid is defined by its volumic mass ρ, velocity v, pressure p, and temperature T , as
well as by certain thermodynamic properties that will be described later. The air is
initially at rest at pressure po. We assume that there are no thermic flows between
the gas and the chamber: the process is taken to be adiabatic. The dimensions of
the chamber correspond to its height h and its length, defined as Lo at rest and
L(t) = Lo + u(t) at time t.

The objective is to study the effect of the enclosed and compressible air on the
dynamic piston response. Various piston masses are considered, to illustrate how the
fluid flow model needs to be chosen carefully, according to its frequency response.

3. Mathematical Models: The Governing Equations.

3.1. Structure Part. The piston motion is governed by (1.1). For a movable
piston with only one degree of freedom (i.e., unknown), u(t) can be written as [15, 18,
19]

(3.1) mpü = −kp(Ls(t) − Lso)�n.�ı +Ap(t),

with A the piston section, Ls(t) = Lse − u(t) the current length, �ı the unity vector
on the x-axis, and �n = −�ı the piston normal vector. The right-hand side of (3.1)
represents the restored force of the spring and the fluid pressure exerted on the piston.
The static position at rest is defined by u = u̇ = ü = 0 for p = po. We deduce from
(3.1) that

(3.2) kp(Lse − Lso) +Apo = 0 with po = chamber pressure at rest.

Substituting (3.2) into (3.1), we finally obtain

(3.3) mpü+ kpu(t) = A(p(t) − po), with u(0) = u0 and u̇(0) = 0,

the classical form of a mass-spring system completed by initial conditions on u(0)

and u̇(0). We define fo = 1
2π

√
kp

mp
as the natural frequency (Hz) and To = 1

fo
as

the natural period (sec) of the mass-spring system. At this stage this mathematical
model is incomplete: the pressure p(t) exerted on the piston is unknown. This term
may only be calculated by a fluid flow model that must be coupled to the piston model
(see (3.3)).

3.2. Fluid Part. Three models of increasing complexity are presented for com-
puting the pressure term p(t) in (3.3).

3.2.1. A-Model: Ideal Gas Law with Adiabaticity Condition. The internal
pressure in the chamber is assumed to be homogeneous (not x-dependent) and di-
rectly dependent on the piston motion. The compressive process is assumed to be
adiabatic: there are no exchanges between the fluid and its external environment.
The change in pressure p(t) is consequently governed by the adiabatic ideal gas law
[24],

(3.4) p(t)V (t)γ = poV
γ
o or

p(t)
ρ(t)γ

=
po

ργ
o
, with p(t) = ρ(t)RT (t).

V (t) = Vo+Au(t) defines the current volume of gas, T (t) and ρ(t) are the temperature
and the volumic mass of the gas, R is the individual gas constant, and γ = 1.4 is the
specific heat ratio of the gas. Terms with an o subscript refer to conditions at rest.
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The homogeneity assumption (not x-dependent) is only valid for low piston speeds,
and it is therefore assumed that the fluid adapts itself instantaneously.

Remark 1. For this model, it is not possible simply to consider the case of a
fixed temperature (Boyle–Mariotte law, 1662, that stipulates p(t)V (t) is kept constant).
This approach is in contradiction with the adiabatic assumption of the physical model
presented: thermic flows are indeed vital for maintaining a fixed temperature for a
Boyle–Mariotte process.

p(t)

−−→
u̇(t)

�n

po, co, γ

Fig. 3.1 Piston analogy in a semi-infinite chamber.

3.2.2. B-Model: Piston Analogy Model. This model gives an analytical relation
for the variation in pressure resulting from the displacement of a piston in a semi-
infinite chamber [2, 21]. The concept is illustrated in Figure 3.1. The exact pressure
exerted on the moving piston is then given by

(3.5) p(t) = po

(
1 +

γ − 1
2

(−−→
u̇(t).�n
co

)) 2γ
γ−1

,

where po and co are, respectively, the pressure and the speed of sound of the ambient
conditions in front of the wave generated by the piston and γ = 1.4 is the specific heat
ratio of the gas. The B-model, however, can only be used to calculate the pressure
on the piston, and not at any point in the chamber.

Remark 2. This relation holds when there is a single simple wave (with no
reflective wave due to inappropriate boundary conditions, for example).

3.2.3. C-Model: 1D Compressible Fluid Flow Evolution. This model is based
on a set of three coupled equations [7, 13, 21, 23] governing the nonstationary evolution
of a compressible 1D flow.

General 1D Fluid Flow Equations for a Fixed Domain. For a fixed domain of
constant length L, these equations correspond to the conservation laws

mass:
∂ρ

∂t
+
∂ρv

∂x
= 0,

momentum:
∂ρv

∂t
+
∂(ρv2 + p)

∂x
= 0 for all x ε [0, L], t ≥ 0,

total energy:
∂ρe

∂t
+
∂(ρe+ p)v

∂x
= 0.

All the variables are (x, t)-dependent, but this notation has been suppressed for clarity.
The total volumic energy e(x, t) is given by

e = CvT +
v2

2
, with Cv =

R
γ − 1

, γ = 1.4, and R = 287 m2s−2K−1.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 
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Cv is the specific heat capacity of the gas in a constant volume process, and R the
individual gas constant. The local pressure p(x, t) is related to the temperature T (x, t)
according to the ideal gas law:

p = ρRT = (γ − 1)
(
ρe− 1

2
ρv2
)
.

No viscous effects are considered. These three equations are usually combined in a
vectorial form such as

(3.6)
∂

∂t
{U} +

∂

∂x
{F} = {0}, with {U} =



ρ
ρv
ρe


 and {F} =




ρv
ρv2 + p

(ρe+ p)v


 ,

that is rewritten in an indicial form:

(3.7)
∂Ui

∂t
+
∂Fi

∂x
= 0 for i = 1, 2, 3.

The index i is related to the form corresponding to the mass (i = 1), momentum
(i = 2), and energy (i = 3) conservation, respectively.

The term {F} is related to a transport phenomenon: it is known as the flux term.
The flux F (q) of any quantity q (e.g., mass, momentum, and energy) is defined as the
quantity flowing through a section S per unit time. For a fixed section, it is related to
the local fluid velocity:

(3.8) F (q) =
∫

S

q�v.�ndS,

where �n defines the orientation vector of the section (along the x-axis in this case).

Notion of Movable Domains. The finite element method [8, 10, 30, 31, 32] is
used to solve the fluid flow equations. This involves computing the solution at discrete
locations, called nodes, within the fluid domain; two successive nodes form a finite
element. The calculation domain is called a mesh and is illustrated in Figure 3.2.
The two-node finite elements are also shown and numbered using parentheses. A
node attached to a movable boundary (such as the piston at x = L(t)) must follow
it. In order to prevent nodes impinging or traversing, interior nodes must be moved,
except for the node attached to the fixed boundary located at x = 0. This is similar
to the compression or expansion of the bellows of an accordion.

Unfortunately, (3.7) is not valid for movable nodes: the flow term Fi must be
corrected to take into account the motion of the nodes where it is calculated. We then
consider that any point of the fluid domain is movable at a given velocity wx(x, t).
This concept of moving coordinates is illustrated in Figure 3.3.

The chamber is superimposed as straight lines, respectively, for two successive
times t and t + ∆t. We consider a mesh composed of five nodes located at regular
intervals along the domain and indexed from 1 through 5. They are represented by

x

x = 0 x = L(t)

1 2 3 N−2 N−1 N

(1) (2) (N−1)(N−2)

Fig. 3.2 Fluid mesh composed of N nodes and Nelt = N − 1 two-node finite elements.
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L(t)

L(t+ ∆t) u̇(t)×∆t

x1(t)

1(t+∆t)

2(t)

2(t+∆t)

3(t)

3(t+∆t)

4(t)

4(t+∆t)

5(t)

5(t+∆t)

piston at t+ ∆t

piston at t

chamber boundary

Fig. 3.3 Moving physical space x(t) representation.

• a circle symbol (◦) to depict their position at time t;
• a cross symbol (×) to depict their position at time t+ ∆t.

It is clearly essential to be able to move nodes in order to prevent the traversing
node effect, visible in Figure 3.3 between nodes 4 and 5: if nodes 4 and 5 are fixed,
then finite element (4) is outside the domain at t+ ∆t.

Fluid Flow Formulations. At this stage two classical formulations based on the
relations between the observer attached to a node and the fluid particles can be har-
nessed to express the fluid flow relations:

• Eulerian: the observer is fixed (wx(x, t)=0) and sees the particles passing.
• Lagrangian: the observer is attached to the fluid particle (wx(x, t)=v(x, t)).

The set of equations (3.7) corresponds to the Eulerian approach. The Lagrangian
approach is essentially used for closed domains for which there are no inflow or outflow
conditions (the same particles can be observed throughout the process). In the general
case of a flow in a duct, the Lagrangian approach suffers from the limitation that any
particle leaving the domain (outflow) must be replaced by a new one (inflow). A third
formulation is proposed for general cases of fluid flow, based on a combination of the
Eulerian and Lagrangian approaches and known as the ALE (arbitrary Lagrangian
Eulerian) approach [11, 12].

Correctly calculating the flows passing through a moving section at velocity wx is
vital for ensuring the conservation of mass, momentum, and energy. This is illustrated
in Figure 3.4 via an electrical analogy, namely, the measurement in a cable of the flow
of electrons passing through a movable probe. Three different cases are considered:
a fixed probe (Eulerian), a movable probe at electron velocity (Lagrangian), and
finally a probe moving in opposite directions (ALE). Measures are illustrated with
an ammeter-type graduation at the top of the probe. The measured flow is then a
function of the gauge velocity of the particle with respect to the probe motion. For
a movable section at velocity wx (see Figures 3.4 (b) and (c)), the flow through this
section, given by (3.8), is corrected as follows to take into account the section motion

+−
o

cable probeelectron
�v

x

(a) Eulerian (fixed probe)

+−
o

x

�wx = �v
�v

(b) Lagrangian

+−
o

x

�wx = −2 × �v
�v

(c) ALE

Fig. 3.4 Electrical analogy for flow measurement according to probe motion.
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(gauge velocity):

F̃ (q) =
∫

S

q(�v − �wx).�ndS.

Note that if �wx = �v, the measured flow equals zero: the observer attached to the
moving node sees no particles passing.

General 1D fluid flow equations for the ALE formulation. Applying the same
corrective strategy to the vector form given by (3.7) leads to

(3.9)
∂

∂t
(JUi)+ J

∂

∂x
(Fi− wxUi︸ ︷︷ ︸

F̃i

) = 0 for i = 1, 2, 3.

The second term F̃i in the spatial derivative is the corrected flow with respect to the
movable space coordinate. Ui, Fi remain fixed (see (3.7)), and wx(x, t) defines the
local domain velocity.

This set of equations is placed in a fixed space denoted by ξ (belonging to [0, Lo])
in order to make the mathematical integration easier. The J(x, t) variable appearing
in (3.9) is called the Jacobian and is related to the substitution rule between x(t) and
ξ. It is defined by

J(x, t) =
dx(ξ, t)
dξ

or
d

dx
= J

d

dξ
such that

∫
x(t)

f(x, t)dx =
∫

ξ

f(x(ξ), t)Jdξ.

Remark 3. This form is general, covering both the Eulerian formulation by con-
sidering wx(x, t) = 0 and the Lagrangian approach by considering wx(x, t) ≡ v(x, t),
for all (x, t). The ALE approach combines the best features of both the Lagrangian
description (tracking free surfaces and interfaces between different materials are typ-
ical examples) and the Eulerian description. The ALE approach allows the nodes on
the computational grid to move in any prescribed manner, and herein lies the power
of the ALE approach.

Boundary conditions are given by a zero-flow condition at x = 0 and by ensuring
kinematic compatibility between fluid flow and piston velocity at x = L(t), that is,

v(0, t) = 0 and v(L(t), t) = u̇(t) for t ≥ 0.

4. Numerical Models. Numerical techniques with an increasing level of com-
plexity are described in this section, from the classical scalar differential equation for
the structure solver to the finite element approach for the C-model fluid flow solver.

4.1. Structure Solver. The time resolution of the scalar (3.3) is ensured using
an implicit finite difference [27] Newmark–Wilson scheme. It is based on the following
time series expansions on u and u̇:

(4.1) un+1 = un + ∆tu̇n +
∆t2

4
(ün + ün+1) and u̇n+1 = u̇n +

∆t
2

(ün + ün+1).

The indexes n − 1, n, and n + 1 correspond to the times t − ∆t, t, and t + ∆t, as
illustrated in Figure 4.1. ∆t is the time step between two successive solutions. We
deduce from the first relation given in (4.1) that

(4.2) ün+1 =
4

∆t2
∆u− 4

∆t
u̇n − ün.
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0 ∆t 2∆t tn−1 tn tn+1

∆t

u0 u1 u2 un−1 un un+1

time t

Fig. 4.1 Time axis discretization and corresponding u solution.

The variation ∆u = un+1 − un between two successive times is obtained by injecting
(4.1) and (4.2) into (3.3), where all structure variables are taken at time n+ 1:

(4.3)
(

4mp

∆t2
+ kp

)
∆u = A(pn − po) + kpu

n +mp

(
4

∆t
u̇n + ün

)
.

This recurrence relation allows the new piston position un+1 to be computed from
un, u̇n, and ün. The structure position is then updated according to

(4.4) un+1 = un + ∆u,

and the velocity and acceleration are also updated according to (4.1) and (4.2). The
first step (n = 1) of (4.3) requires the initial conditions denoted by u0 and u̇0 to be
taken into account in order for ü0 to be deduced. It is easy to show from (3.3) that

ü0 =
1
mp

(
−kpu

0 +A(p(0) − po)
)
,

where p(0) is the uniform pressure in the chamber resulting from an adiabatic variation
entailed by the initial change in the piston position u0.

4.2. Fluid Solver. The A- and B-models explicitly express the change in pressure
as a function of the piston position. This section is devoted to the implementation of
the C-model, which is the most complex of the numerical models presented. It is based
on a finite element approach for spatial discretization and a Lax–Wendroff scheme
[20] for temporal resolution. In order to avoid tedious mathematical developments
we deliberately avoid going into too much detail here. For more details on the finite
element method, we refer the reader to [8, 10, 30, 31, 32].

To summarize, the C-model based on the finite element method requires a varia-
tional form W of the system (3.9),

(4.5) W =
∫ Lo

0

ψ
∂JUi

∂t
dξ −

∫ Lo

0

∂ψ

∂ξ
F̃idξ +

[
ψF̃i

]Lo

0
= 0 ∀ψ(ξ) for i = 1, 2, 3,

where ψ(ξ) is any test-function of class C1 (first derivative exists and is continuous).
The integration is performed on the fixed space (ξ ∈ [0, Lo]) and the last two terms
result from an integration by parts of the flux term.

A time integration between two successive times (indexed n and n+ 1) leads to
(4.6)∫ Lo

0

ψ (JUi)
n+1

dξ −
∫ Lo

0

(JUi)
n
dξ − ∆t

(∫ Lo

0

∂ψ

∂ξ
F̃

n+ 1
2

i dξ +
[
ψF̃

n+ 1
2

i

]Lo

0

)
= 0.

The final step is a spatial discretization on the finite elements of the mesh followed
by an assembling process to obtain

(4.7) [M ]n+1{Ui}n+1 − [M ]n{Ui}n − ∆t{Ri}n+1/2 = {0} for i = 1, 2, 3,
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where {Ui}n is the (N × 1) global vector of unknowns of the ith equation of (3.9).
[M ]n+1 and [M ]n are (N ×N) global mass matrices (at times n and n+1). The term
{Ri}n+1/2 is an (N × 1) global residual vector calculated at the half-way time step.
Equation (4.7) represents the system of equations to be solved for each time step [6].

Remark 4. At this stage, the mass matrices [M ]n and [M ]n+1 are computed on
the meshes deformed at times n and n + 1, respectively. In 1D analysis the residual
vector {Ri}n+1/2 can be calculated on any mesh between times n and n+ 1, since the
result of the calculation is independent of the particular mesh chosen. This is not,
however, the case in 2D and 3D analyses, where a space conservation law has to be
respected. We refer the reader to [9, 12, 16, 29].

The explicit nature of the Lax–Wendroff scheme makes it possible to solve the
three systems (i = 1, 2, 3) separately for each new time step n+1. A temporal stability
criterion must nevertheless be satisfied in order to prevent spurious and nonphysical
oscillations that occur when the chosen time step ∆t exceeds the numerical time
required for information to cover a distance Le corresponding to the length of an
element. This criterion, known as the CFL (Courant, Friedrichs, and Levy) condition,
can be written

(4.8) ∆t = CFL× min
(

Le

|v + c+ wx|

)
, with CFL < 1,

where c =
√
γRT is the local speed of sound. Because of the nonpositivity of the

scheme, a shock capturing technique [5] may be used to ensure spatial stability in
the presence of significant convective effects (not developed here but available in the
MATLAB scripts).

4.3. Fluid Mesh Deformation Technique. Fluid mesh deformation at each time
step of the coupling scheme is necessary (see section 3.2.3) to

1. ensure kinematic compatibility between the fluid domain and the piston po-
sition;

2. prevent the phenomenon of traversing by fluid nodes near the piston.
Figure 4.2 illustrates two successive mesh configurations at times t and t+∆t resulting
from a positive piston motion equal to u̇×∆t, where u̇ is the piston velocity computed
by the structure solver. The new position xn+1

j for node j is given by a simple linear
interpolation,

(4.9) xn+1
j = xn

j +
j − 1
N − 1

× u̇× ∆t for j = 1, . . . , N,

mesh at t

mesh at t+ ∆t
x

x

x = 0 x = L(t)

x = L(t+ ∆t)

node j

wx(j) × ∆t u̇× ∆t

Fig. 4.2 Fluid mesh deformation between two successive times t and t +∆t.
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where N is the total number of nodes for the fluid mesh. We then deduce the nodal
velocity wx(j):

(4.10) wx(j) =
xn+1

j − xn
j

∆t
=
j − 1
N − 1

× u̇ for j = 1, . . . , N.

5. Quality Indicators for the C-Model: Postprocessing Analysis. Three in-
dicators are calculated to check the conservation capabilities of the ALE approach
(C-model only) and the coupling scheme. All three are obtained by integrating on
the domain of (3.9) with (i = 1) for the mass, (i = 2) for the force (or momentum),
and (i = 3) for the energy, such that

(5.1)
∂

∂t

∫ L(t)

0

UiAdx +A [Fi− wxUi]
L(t)
0 = 0.

The flux term has been modified using the divergence theorem.
Considering the definitions of Ui and Fi given by (3.6) and the boundary condi-

tions (v(L(t)) = wx(L(t)) = u̇(t) and v(0, t) = wx(0, t) = 0), we deduce from (5.1)
the three following indicators.

5.1. Mass Conservation. The first component of (5.1) corresponds to the fluid
mass (Mf ) conservation in a closed domain:

∂

∂t

∫ L(t)

0

ρAdx = 0 ⇒ Mf (t) =
∫ L(t)

0

ρAdx = cste =Mf (0).

The fluid solver computes the massMf(t) that is compared to the initial massMf (0).

5.2. Momentum Conservation. The second component of (5.1) expresses that
the fluid momentum variation results from the piston force:

(5.2)
∂

∂t

∫ L(t)

0

ρAvdx − p(0)A = −p(L)A ≡ − kpu(t)︸ ︷︷ ︸
Fs

p

.

The left-hand term (the integral) is the force Ff
p computed by the fluid solver and is

compared to the piston force Fs
p computed by the structure solver.

5.3. Energy Conservation. Time integration of the third component of (5.1)
between the initial condition and the current time t yields the impulsion I(t) cor-
responding to the total fluid energy variation (left-hand term) or the fluid energy
required for the piston motion (right-hand term):

(5.3) I(t) =
∫ L(t)

0

ρAedx−
∫ L(0)

0

ρAedx = −
∫ t

0

Ap(L, t)v(L, t)dt.

On the other hand, the time integration of (3.3) allows us to define the variation of
the mechanical energy of the piston,

(5.4) E(t) − E(0), with E(t) =
1
2
mpu̇(t)2 +

kp

2
(Lse − u(t) + Lso)2.

Mechanical energy is composed of a kinetic part Ec(t) and a potential part Ep(t).



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 
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Energy conservation is then ensured if

I(t) = E(t) − Eo for t ≥ 0,

where Eo = 1
2kp(Lse−u(0)+Lso)2 results from the initial conditions. I(t) is computed

by the fluid solver, while E(t) − Eo is computed by the structure solver.

6. Computer Model. The coupling scheme regularly updates common data be-
tween the fluid and structure solvers, namely, the pressure and the piston position
and velocity. The coupling scheme is based on a staggered time integration method
[23] and is illustrated in Figure 6.1.

n

n n+ 1

n+ 1

n+ 2

n+ 2

n+ 3

n+ 3 time

time

(1)(1)

(2)(2)

(3)(3)

(4)(4)

∆t

Fluid solver

Structure solver

Computation

Message passing

Fig. 6.1 Coupling scheme between structure and fluid solvers.

This coupling scheme must be read as follows:
• Step (1): Transfer of p(t) from the fluid to the structure.
• Step (2): Calculation of the new piston position and velocity.
• Step (3): Transfer of u(t+ ∆t) and u̇(t+ ∆t) from the structure to the fluid.
• Step (4): Fluid calculation for new pressure p(t+ ∆t) and mesh adaptation.

Go back to Step (1) until a given number of steps is reached.
The computer model was developed using MATLAB, in the form of a set of modular
scripts. Documentation, including a tutorial, is available from either http://www.utc.
fr/∼elefra02/ifs or http://www.hds.utc.fr/∼boufflet/ifs.

7. Practical Results. The results of 1D FSI calculations with the A-, B-, and
C-model fluid flow models are presented with an emphasis on physical analysis. We
also provide comparisons with derivative versions of the C-model (pure Eulerian and
pure Lagrangian approaches) to illustrate the particular advantages and drawbacks
of the different techniques.

General parameter values are

Lso = 1.2 m, Lo = 1 m, kp = 107 N/m, mp = [10, 20, 100, 1000] kg, u0 = 0.20 m,

po = 105 Pa, To = 300 K, co =
√
γRTo = 334.7 m/s, K,CFL = 0.9, Nelt = 100.

Remark 5. We choose the number of finite elements, denoted Nelt, by examining
convergence: for different mesh sizes we measure the speed of a propagated disturbance
and we select the mesh size where this velocity is closest to the theoretical speed of
sound co.

The natural piston frequency is a function of mp (kp is kept constant), as shown
in Table 7.1.

http://www.utc.fr/~elefra02/ifs
http://www.utc.fr/~elefra02/ifs
http://www.hds.utc.fr/~boufflet/ifs
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Table 7.1 Natural frequencies of the piston.

mp (kg) 1000 100 20 10
fo (Hz) 16 50 113 159
To (s) 6.25 10−2 2 10−2 8.85 10−3 6.28 10−3
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(c) fo = 159 Hz.

Fig. 7.1 A- (∗), B- (�), and C-models (◦): piston pressure variations.

The following constants are used in order to normalize the results:

Fo = k(Lse − u0 − Lso) +Apo, Eo =
1
2
kp(Lse − u0 + Lso)2, To, and u0,

respectively, for the force acting on the piston, the mechanical energy, the time, and
the piston motion.

7.1. Piston Pressure. We now focus on the ability of the different fluid models
to predict piston pressure.

Depending on the piston characteristics (km and mp), different flow regimes may
be observed. Three frequencies are considered for the (piston+spring) system: fo = 16
Hz, 50 Hz, and 159 Hz.

The results are illustrated in Figures 7.1 (a), (b), and (c). The x-axis corresponds
to the normalized time and the y-axis to the piston pressure. In each figure three
curves are plotted: the A-, B-, and C-models are plotted with star (∗), diamond (�),
and circle (◦) symbols, respectively. A vertical dashed line is superimposed to show
the time step at which the wave generated by the initial condition impacts the piston.
The time step in question corresponds to the validity limit of the exact B-model (see
Remark 2 in section 3.2.2). In order to analyze these results, we introduce the notion
of a characteristic time. This can be defined in various ways:

• for the fluid it is the time required for a pressure wave to cross the chamber
from one side to the other,

T f
char ≈ L(t)/co ≈ 3.6 10−3s;

• for the structure it is the natural period of the piston, T s
char = To.

If the two characteristic times are similar, the fluid and the structure see each other
and the coupling is strong. In the case where one of the characteristic times sig-
nificantly exceeds the other, the dynamics in question (fluid or structure) can be
considered as quasi-steady for the other: the coupling is weak.
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From Figures 7.1 (a), (b), and (c), we observe and can conclude the following:
1. In all cases, the B- and C-models correspond perfectly as long as the reflective

wave has not impacted the piston (from time 0 to the time shown by the
vertical dashed line). The C-model can thus be validated with respect to the
“exact” behavior of the B-model.

2. The A- and C-models are in good agreement only for the lowest frequency
fo = 16 Hz. This can be explained in terms of characteristic time:

• For fo = 16 Hz, the characteristic times differ by one order of magnitude:

T s
char

T f
char

=
6.25 10−2

3.6 10−3
= 17.36 ⇒ T s

char > T f
char.

The piston does not see the pressure waves: the coupling is weak, and
the evolution can be seen as quasi-steady.

• For fo = 159 Hz, the characteristic times are of the same order:

T s
char

T f
char

=
6.28 10−3

3.6 10−3
= 1.75 ⇒ T s

char ≈ T f
char.

The coupling is strong, and nonstationary effects become visible.

7.2. Change in Fluid Flow within the Chamber. Figure 7.2 shows a “3D-view”
of the pressure changes in the chamber for fo = 113 Hz calculated with the C-model.

The x-axis corresponds to the spatial coordinate along the chamber, the y-axis
corresponds to the normalized time, and the z-axis corresponds to the pressure profile
in the chamber. The piston position is superimposed with a circle (◦) symbol; the
piston motion is clearly visible along the x(t)-axis with a maximum amplitude of
±0.2 m for this calculation.

We observe an incident pressure wave resulting from the piston’s movement from
its initial position u0. This wave impacts the fixed wall at time t/To = 0.4. We
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Fig. 7.2 3D illustration of p(x, t) for the C-model: u0 = 0.2 m, fo = 113 Hz.
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subsequently see a reflective wave coming back toward the piston. The velocity wave
is measured by

c =
Lo + u0

0.4 × To
=

1.2
0.4 × 0.0089

= 337 m/s.

As expected (see Remark 5), this is a good approximation of the exact speed of sound
calculated with co =

√
γRT = 334.7 m/s. The fluid mass variation ∆Mf (t)/Mf (0) =

0.07% confirms the quality of the ALE approach for mass conservation.
A bold dashed line depicts the incident wave path in the (x, t) space. Its slope

in the (x, t) space is constant, corresponding to a wave of constant speed propagated
within a fluid domain at rest and at a uniform temperature.

7.2.1. Frequency Dependent Flow Regime. Three different natural frequencies
fo (see section 3.1) of the piston were considered: fo = 16, 50, and 159 Hz. The results
are illustrated in Figures 7.3 (a), (b), and (c). The computing time is equal to half
the natural period in order to avoid superimposing curves on the graph.

As in Figure 7.2, we use 3D views of the piston pressure evolution completed on
piston position by a circle (◦) symbol. Piston pressure changes resulting from the A-
and B-models are also shown, respectively, with a star (∗) and a diamond (�) symbol.
In each figure, the values of u0 and Fo and total mass variation ∆Mf (t)/Mf (0) (only
valid for the C-model) are indicated.

We observe the following:
1. The total fluid mass is perfectly conserved in spite of a piston motion that

may reach 20% of the chamber length (∆Mf/Mf(0) ≤0.08%).
2. The fluid regime is quasi-steady (3D views) for the lowest frequency (see

Figure 7.3 (a)). In this case, the fluid characteristic time is several orders
of magnitude smaller than the natural period of the piston: the fluid adapts
itself instantaneously to the piston’s motion. This explains why the piston
pressures given by the A- and C-models are in very good agreement (◦ and ∗
symbols are almost merged in Figure 7.3 (a)).

3. The fluid regime is unsteady (transient) for the higher frequencies (Figures
7.3 (b) and (c)), thus requiring the C-model to be used.

4. The third case (Figure 7.3 (c)) leads to a strong compression phenomenon
with a strong pressure gradient that may become a shock if the chamber
length is semi-infinite. In case of a strong shock, a shock capturing technique
[5] is required to ensure the stability of the numerical scheme.

5. The incident wave path (bold dashed line) is clearly visible in Figures 7.3 (b)
and (c) with different slope values in (x, t) in relation to the normalized time
axis (values of To differ).

7.2.2. Transfers and Conservation Considerations. Force and energy transfers
are plotted in Figures 7.4 (a) and (b) for fo = 16 Hz and 159 Hz. Each graph is
composed of three parts (C-model results):

• top: normalized signals u(t)/u0;
• middle: force Fp acting on the piston with square (�) symbols for the value

calculated by integrating fluid momentum (5.2) and circle (◦) symbols for the
value calculated from the elongated spring (3.1);

• bottom: structure energy E(t) with square (�) symbols (from (5.4)) and fluid
energy I(t) with circle (◦) symbols (from (5.3)). Kinetic energy Ec(t) is also
shown as a dashed line in order to illustrate structure energy transfer from
potential to kinetic.
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Fig. 7.3 3D view of pressure changes during half a period: u0 = 0.2 m, Fo = 2.106 N.
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Fig. 7.4 Piston motion, force, and energy transfer signals vs. time during two natural periods (�
symbols are relative to the fluid and ◦ symbols are relative to the structure).

Computing time is equal to twice the natural period of the piston (tmax = 2×To).
We observe the following:

1. The piston force evolutions (middle graphs), resulting from both the fluid
momentum integration (5.2) and the fluid pressure, perfectly correspond. One
is the inverse of the other, owing to opposite normals on the piston (action-
reaction principle).

2. Energy conservation (bottom graphs) is always ensured and the difference be-
tween mechanical energy and impulsion remains lower than 0.1% throughout.
They move in opposite directions, showing that what is lost by one is taken
back by the other.
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3. In all cases, the mechanical energy (lower graphs) does not remain constant,
indicating that energy is transferred from the piston to the fluid. A small
dissipative effect is visible in the highest frequency case attenuating the u(t)
signal. This shows a strong coupling between the fluid and the piston.

4. In Figure 7.4 (b) (top graph), we observe that the period of the piston is
greater than its natural period To. This demonstrates that FSI may change
the dynamic behavior of a flexible structure (aeroelasticity domain [4]).

7.3. Comparing the ALE, Eulerian, and Lagrangian Approaches. We com-
ment on results obtained using the following derivative versions of the C-model:

1. An ALE approach.
2. A Lagrangian approach, where wx(x, t) = v(x, t) (see Remark 3).
3. A pure Eulerian approach, where wx(x, t) = 0, completed with a mesh defor-

mation.
Remark 6. The third version (pure Eulerian on a moving mesh) illustrates the

error to be avoided and corresponds to the direct use of a classical compressible fluid
flow solver on a movable mesh with no flux correction.

Piston pressure evolutions are plotted in Figure 7.5 (a) and (b), respectively, for
fo = 50 and 159 Hz. The solution obtained via the Eulerian approach is depicted
with dashed lines. The results of the ALE and Lagrangian approaches perfectly match
(equivalent to results shown in Figures 7.1 (b) and (c)); this means that the solution
is not mesh velocity dependent.

We observe that the Eulerian approach always overestimates the change in piston
pressure, as long as there is no reflective wave.

This overestimation may be greater than 80%. Moreover, it does not by any
means guarantee the conservation of total fluid mass, which may increase by as much
as 67%, whereas it is lower than 0.1% for the ALE and the Lagrangian approaches. It
can be seen that a sharp time step reduction has no significant corrective effect for the
Eulerian approach, and that a reduction in mesh size (increasing Nelt) leads to worse
results, because node traversing effects become more significant as Nelt increases. The
ALE and Lagrangian models give similar results. The choice between them will be
determined by the domain characteristics, open or closed. In most cases the ALE
approach is preferable, since a Lagrangian approach used in an open domain (with
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flow inlet and outlet) will always lead to severe mesh distortions, even though the
Lagrangian approach is suitable for a closed domain.

8. Conclusions. This introduction to fluid-structure computation uses the ex-
ample of a gas contained in a 1D chamber closed by a moving piston. Only one model
is proposed for the piston dynamics. This simple textbook case allows us to intro-
duce three different fluid models of increasing accuracy and complexity: a stationary
analytical model (A-model), an exact wave model for piston pressure calculation (B-
model), and a complete 1D compressible fluid flow model (C-model).

It is shown that the simplest A-model is only suitable for low frequency responses
of the piston that lead to a quasi-steady-state evolution of the fluid.

For higher frequencies, the exact B-model is the best choice only for semi-infinite
chambers (no reflective wave), but this model only gives the pressure on the piston.

The C-model is the most complex and complete model. It offers a good approxi-
mation of the pressure and fluid velocity at any point in the domain and at any time
step. The notion of movable domain is considered in order to take account of changes
in chamber length resulting from piston motion, which gives rise to the general ALE
approach in addition to the classical Lagrangian and Eulerian approaches. Three
criteria are described, respectively, for mass, momentum, and energy, as a means of
checking the conservation capability of the ALE approach and of the coupling scheme
between the fluid and the structure. It is shown that the C-model, using a pure Eule-
rian approach and with a moving mesh adaptation, yields only unsatisfactory results,
with pressure being overestimated and with no guarantee of mass conservation.

For readers interested in extending this 1D approach to 2D and 3D models, we
now provide a nonexhaustive list of important requirements for high-quality coupling
calculations:

1. The use of a technique to automatically compute the deformation of the fluid
mesh at each new time step. We generally consider a pseudomaterial analogy
for the fluid mesh that can be deformed using classical elasticity problem
solvers [26, 28].

2. Respect of a space conservation law for the fluid model in 2D or 3D. For
example, in 2D, this stipulates that the update of the solution from time
n to time n + 1 requires the integration of the fluid flow equations on the
intermediate mesh given at time n+1/2 (see [9, 12, 16, 29] for comprehensive
details).

3. The coupling scheme should require a subcycling approach in order to up-
date the structure deformation only after Nf fluid time step calculations, for
reasons of time efficiency. This implies modifying the coupling scheme by
introducing an iterative procedure.

4. The quality of the coupling should be measured during a postprocessing phase
to ensure mass, momentum, and energy conservation at each time step be-
tween the fluid domain and the structure.

5. In order to facilitate the computing implementation, the use of a parallel
environment with message passing capabilities, such as PVM [14] or MPI
[22], is recommended.
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Notation.

{.} : column vector
〈.〉 : row vector
[.] : matrix
.0 : initial at time t = 0
.o : at rest
.(x, t) : x- and t-dependent
ξ : reference space
j : node index
n−1, n, n+1 : indices for time steps t− ∆t, t, and t+ ∆t

Structure Nomenclature.

A : piston area [m2]
mp : piston mass [kg]
kp : spring rigidity [N/m]
Lso, Lse, Ls(t) : spring length unstretched, at rest, and at time t [m]
u(t), u̇(t), ü(t) : piston displacement, velocity, and acceleration [m, m/s, m/s2]
�n : normal vector to the piston
fo, To : natural frequency and period of the mass-spring [Hz], [s]
∆t : time step [s]
E , Ec, Ep : mechanical, kinetic, and potential energies [J]

Fluid Nomenclature.

ρ(t) : volumic mass [kg/m3]
p : pressure [Pa]
v : fluid velocity [m/s]
c : speed of sound [m/s]
J : Jacobian
L : chamber length [m]
wx : nodal mesh velocity [m/s]
e : total volumic energy [J]
Cv : specific heat capacity [m2s−2K−1]
R : individual gas constant [m2s−2K−1]
T : temperature [K]
V : chamber volume [m3]
γ : specific ratio of the air
Fi(q) : flux term of quantity q [q × m3/s]
F̃i(q) : corrected flux term of quantity q [q × m3/s]
I : impulsion [J]
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