Homework 4 - Stress and Equilibrium

Handed out: Mon., 22-10-2007

1. The components of the stress tensor at a point of the body in Cartesian coordinates are given by $\sigma_{x x}=500 \mathrm{~N} / \mathrm{m}^{2} ; \sigma_{x y}=500 \mathrm{~N} / \mathrm{m}^{2} ; \sigma_{y y}=500 \mathrm{~N} / \mathrm{m}^{2} ; \sigma_{y z}=$ $-750 \mathrm{~N} / \mathrm{m}^{2} ; \sigma_{x z}=800 \mathrm{~N} / \mathrm{m}^{2} ; \sigma_{z z}=-300 \mathrm{~N} / \mathrm{m}^{2}$. Compute the normal and tangential components of the traction vector relative to a surface defined by its normal

$$
\underline{\mathrm{n}}=\frac{1}{2} \underline{\mathrm{e}}_{x}+\frac{1}{2} \underline{\mathrm{e}}_{y}+\frac{1}{\sqrt{2}} \underline{\mathrm{e}}_{z}
$$

2. Compute the principal stresses and principal directions for the stress tensor of the first question.
