Homework 1 - Vectors and Tensors

Handed out: Thurs., 20-09-2007

Due to: Thurs., 27-09-2007

1. Prove the following propositions
(a) If \mathbf{S} is a symmetric tensor,

$$
\mathbf{S .} \mathbf{T}=\mathbf{S} . \mathbf{T}^{T}=\mathbf{S} \cdot \frac{1}{2}\left(\mathbf{T}+\mathbf{T}^{T}\right)
$$

(b) If \mathbf{W} is skew-symmetric $\left(\mathbf{W}=-\mathbf{W}^{T}\right)$

$$
\mathbf{W} \cdot \mathbf{T}=-\mathbf{W} \cdot \mathbf{T}^{T}=\mathbf{W} \cdot \frac{1}{2}\left(\mathbf{T}-\mathbf{T}^{T}\right)
$$

(c) If \mathbf{S} is symmetric and \mathbf{W} skew

$$
\mathbf{W} . \mathbf{S}=0
$$

2.Let \underline{n} be a unit vector normal to a plane \mathcal{P}. Consider \mathbf{P} and \mathbf{R} two tensors which, respectively, project and reflect a vector in the plane \mathcal{P}.(remember the notes contain a characterization of a projection; moreover reflection is, from the geometrical standpoint, the specular image of a vector \underline{v} when the plane is saw as a mirror, $R \underline{\mathrm{v}}=\underline{\mathrm{v}}-2(\underline{\mathrm{v}} \cdot \underline{\mathrm{n}}) \underline{\mathrm{n}})$.
(a) Draw a sketch representing a geometry view of both tensors. Write a formal expression to them based on $\underline{\mathrm{n}}$ and using tensor product.
(b) Show that both tensors are really linear transformations.
(c) Verify that \mathbf{P} is symmetric and \mathbf{R} is an orthogonal tensor.
3. Compute the invariants, eigenvalue and eigenvectors of the second order tensor represented by the following matrix

$$
[A]=\left[\begin{array}{ccc}
2 & 0 & 0 \\
0 & 3 & 4 \\
0 & 4 & -3
\end{array}\right]
$$

