
Comput Mech (2008) 42:511–530
DOI 10.1007/s00466-008-0291-1

ORIGINAL PAPER

On the application of the Arlequin method to the coupling
of particle and continuum models

Paul T. Bauman · Hachmi Ben Dhia ·
Nadia Elkhodja · J. Tinsley Oden ·
Serge Prudhomme

Received: 16 May 2007 / Accepted: 30 March 2008 / Published online: 14 May 2008
© Springer-Verlag 2008

Abstract In this work, we propose to extend the Arlequin
framework to couple particle and continuum models. Three
different coupling strategies are investigated based on the
L2 norm, H1 seminorm, and H1 norm. The mathematical
properties of the method are studied for a one-dimensional
model of harmonic springs, with varying coefficients, cou-
pled with a linear elastic bar, whose modulus is determined by
simple homogenization. It is shown that the method is well-
posed for the H1 seminorm and H1 norm coupling terms, for
both the continuous and discrete formulations. In the case of
L2 coupling, it cannot be shown that the Babuška–Brezzi
condition holds for the continuous formulation. Numerical
examples are presented for the model problem that illustrate
the approximation properties of the different coupling terms
and the effect of mesh size.
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1 Introduction

Multiscale modeling at the nanoscale has been the focus
of many investigations and discussion in recent years (see,
e.g., survey articles [11,13]). With the development of faster
supercomputers, scientists can now contemplate simulating
complex systems spanning a large range of scales that were
previously considered intractable. Nevertheless, fully resol-
ved atomistic and molecular simulations still remain out of
reach with current computer resources for engineering sys-
tems of practical interest. There is obviously a need for algo-
rithms that can couple different models, such as continuum
and molecular models, for the simulation of multiscale pro-
blems.

We propose here to extend the Arlequin framework of Ben
Dhia [3–7] to problems that involve both an atomistic model
and a continuum model. The Arlequin framework introduces
an overlapping region in which the two models are coupled
using Lagrange multipliers. Several related methodologies
have been previously proposed [9,14,18]. In particular, the
bridging domain method of Belytschko and Xiao presents
many similar features to the Arlequin method and was nume-
rically investigated in [2,19].

In this paper, we examine in detail the mathematical prop-
erties of such a method when applied to a one-dimensional
model of harmonic springs, with varying stiffness coeffi-
cients, coupled with a linear elastic bar. Our objective is to
investigate three different coupling strategies based on the
L2 norm, the H1 seminorm, and the H1 norm. We show that
the H1 seminorm and H1 norm coupling yield well-posed
problems for the continuous and discrete formulations.
However, we are not able to show that the Babuška–Brezzi
condition holds in the case of the L2 norm coupling: only sim-
ply matching the displacements is not enough for the develop-
ment of a robust coupling method. We also provide a priori
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error estimates for the discrete problem and illustrate our
theoretical results with several simple numerical examples.
Reference [12], brought to the attention of the authors upon
finishing the writing of the present paper, presents a similar
study for the coupling of two continuum models. In that
paper, several numerical examples are shown for L2 and H1

coupling terms as well as different weighting functions in
the coupling terms. Many of the numerical results are ana-
logous to those shown here, but no mathematical results are
given. One major difference between the two papers is that we
are interested here in coupling highly heterogeneous particle
models with homogeneous continuum models. Our ultimate
objective in the investigation of such coupling algorithms is
to extend ideas of goal-oriented error estimation and adapta-
tion [15,16] to control the size and position of the overlapping
region so as to deliver highly accurate simulations.

The paper is organized as follows: following this brief
introduction, we introduce the particle model, the continuum
model, and briefly describe the Arlequin algorithm. In Sect. 3,
we prove that the Arlequin problem is well-posed as establi-
shed by Theorem 1. We show in Sect. 4 that the discrete
formulation of the Arlequin method leads to a well-posed
problem as well. Section 5 describes a few numerical expe-
riments followed by conclusions in Sect. 6.

2 Model problems

In this section, we introduce the coupled model problem to be
studied. First, the discrete model is introduced with accom-
panying notation, then, the continuum approximation, and
finally, the coupled Arlequin model. Mathematical rigor is
postponed until Sect. 3.

2.1 Particle model

We are interested here in a system of n + 1 particles that are
connected by n harmonic springs of various strength ki > 0
and equilibrium length li , i = 1, . . . , n. The initial position
of the particles are denoted by xi and the system undergoes
displacements wi when subjected to force f applied at xn

(Fig. 1). The potential energy of such a system is given by

Ed(w) = 1

2

n∑

i=1

ki (wi − wi−1)
2 − f wn (1)

k1 knki

l1 li ln

x x x x x x10 i n−1 n
x

f

i−1

Fig. 1 System of n + 1 particles connected with n harmonic springs

The particles are assumed to be ordered so that xi−1 < xi

and the particle on the left end of the chain to be fixed, i.e.,
w0 = 0. We then introduce R

n+1
0 = {z ∈ R

n+1 : z0 = 0}.
Equilibrium states of such a system, denoted w ∈ R

n+1
0 ,

can be obtained by minimizing the potential energy:

Ed(w) = min
z∈R

n+1
0

Ed(z) (2)

Thus, w are stationary points of Ed(z) and satisfy

lim
θ→0

1

θ
(Ed(w + θ z) − Ed(w)) = 0 ∀z ∈ R

n+1
0

In other words, the displacements w ∈ R
n+1
0 at equilibrium

are given by

n∑

i=1

ki (wi − wi−1) (zi − zi−1) = f zn ∀z ∈ R
n+1
0 (3)

Problem (3) is equivalent to:

w0 = 0

(k1 + k2)w1 − k2w2 = 0
(4)

−kiwi−1 + (ki + ki+1)wi − ki+1wi+1 = 0 1 < i < n

−knwn−1 + knwn = f

and the system of equations can be represented more com-
pactly in matrix form as

Aw = f (5)

where f T = (0, . . . , 0, f ) and

A =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 . . . 0
0 k1 + k2 −k2 0 0 . . . 0
0 −k2 k2 + k3 −k3 0 . . . 0

. . .

. . .

0 . . . . . . 0 −kn−1 kn−1 + kn −kn

0 . . . . . . 0 0 −kn kn

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6)

The matrix A is symmetric positive definite and induces the
norm ‖z‖ = √

zT Az on R
n+1.

2.2 Continuum model

One possible approximation of the particle model is a linear
elastic continuum. Here, the system of springs can be repla-
ced by an elastic bar on domain Ω , with length L , modulus
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Fig. 2 Elastic bar of length L with modulus E and loaded under
traction T
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Fig. 3 Homogenization of spring model on a representative cell

E , and subjected to traction T = f/A, A being the cross-
sectional area of the bar. The displacement in the bar is deno-
ted by u; see Fig. 2.

The total energy of this system is given by

Ec =
∫

Ω

A

2
σ(x)ε(x) dx − AT (L)u(L) (7)

Here the material is supposed to obey Hooke’s law σ = Eε

and, using ε = u′, we have

Ec =
∫

Ω

AE

2

(
u′)2 dx − AT (L)u(L) (8)

To obtain the elastic modulus, we simply consider a repre-
sentative cell of springs (Fig. 3) so that, in a system consisting
of a periodic array of two springs with stiffness k1, k2 and
equilibrium length l1, l2, we get

AE = k1k2

k1 + k2
(l1 + l2) (9)

The modulus of elasticity E is derived here by equating the
energy in the representative cell with the energy one would
obtain if a linear elasticity model were used. For simplicity,
we will implicitly take A equal to unity.

As with the spring model, the equilibrium state for the
continuum model is found by minimizing the energy (8).

Ωc

domain
Overlap

f

Continuum model

Ωd

Particle model

Ωo

Fig. 4 Arlequin model that replaces the particle model with a combi-
ned particle and spring model

This minimization yields the following problem:

Find u ∈ V = {v ∈ H1(Ω) : v(0) = 0} such that:
∫

Ω

Eu′v′dx = T (L)v(L) ∀v ∈ V (10)

2.3 Coupling scheme

We recall that our objective is to couple the particle model
with the continuum model on Ω . The continuum model is
selected in region Ωc = (0, xb) while the particle model is
chosen in domain Ωd = (xa, L) such that Ω = Ωc

⋃
Ωd

and Ωo = Ωc
⋂

Ωd = (xa, xb), |Ωo| �= 0. We will refer to
Ωo as the overlap region. We denote by |Ωc|, |Ωd |, and |Ωo|,
the length of domains Ωc, Ωd , and Ωo, respectively. The
particle model has been reduced from n+1 to m +1 particles
that are connected by m harmonic springs, supposedly with
m � n. See Fig. 4.

The main idea of the Arlequin method is to modify the
energies as follows:

Êc =
∫

Ωc

αc(x)
E

2

(
u′)2 dx

Êd = 1

2

m∑

i=1

αi ki (wi − wi−1)
2 − f wm

(11)

where we have introduced the weighting coefficients αi and
αc, such that:

αc(x) + αd(x) = 1 ∀x ∈ Ω

αc(x) =
{

1 ∀x ∈ Ωc\Ωo

0 ∀x ∈ Ωd \Ωo

αi = αd

(
1

2
(xi + xi−1)

)
, i = 1, . . . , m

(12)

In the overlap region Ωo, the coefficient αc (and thus αd ) can
be chosen in different ways. Some intuitive and apparently
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0

1
αdαc
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x
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Fig. 5 Plot of different functions used for αc and αd

attractive candidates are (Fig. 5):

αc(x) = 1

2
∀x ∈ Ωo

αc(x) = 1 − (x − xa)

xb − xa
∀x ∈ Ωo

αc(x) = −(x − xb)
2(2x − 3xa + xb)

(xa − xb)3 ∀x ∈ Ωo

(13)

where xa and xb denote the left and right end point of Ωo.
In the overlap region, the main idea is to constrain the

displacements u and w to be “equal” in some appropriate
measure. In order to do so, the first step is to convert the
discrete displacements w into a displacement field Πw that
can be compared to u on Ωo. The natural way to do this is
to take Π as the linear interpolation operator. Other interpo-
lation schemes are possible, but we only consider the linear
interpolant in the present work.

Thus, the “energy” generated by the mismatch of u and
Πw on Ωo is

‖u −Πw‖2 =
∫

Ωo

β1 (u − Πw)2 +β2 (u − Πw)′2 dx (14)

where (β1, β2) are non-negative weight parameters. These
can also be chosen so as to scale the two terms in the inte-
gral. For example, (β1, β2) = (1, 0) refers to the L2 norm,
(β1, β2) = (0, 1) to the H1 seminorm, and (β1, β2) = (1, 1)

to the H1 norm on Ωo.
The coupled problem consists of finding u and w, in appro-

priate spaces Vc and Vd , respectively (defined below), that
minimizes the total energy and satisfies the constraint ‖u −
Πw‖ = 0, i.e.,

Ê(u, w) = Êd(w) + Êc(u) = min
v∈Vc,z∈Vd‖v−Π z‖=0

(
Êd(z) + Êc(v)

)

(15)

Introducing the coupling term

b (λ, (u, w)) =
∫

Ωo

β1λ (u − Πw) + β2λ
′ (u − Πw)′ dx

(16)

the minimization problem (15) can be recast into the follo-
wing saddle point problem:

min
v∈Vc,z∈Vd

max
µ∈M

(
Êd(z) + Êc(v) + b (µ, (v, z))

)
(17)

where M is an appropriate space for the Lagrange multipliers.
We now pose this problem precisely and analyze the details
of its mathematical properties.

3 Mathematical analysis of the coupled formulation

Let Vc = {
v ∈ H1(Ωc) : v(0) = 0

}
and Vd = {

z ∈ R
m+1

}

be the vector spaces of test functions for the continuum and
discrete models, respectively, and let Π be the linear inter-
polant Π : Vd → H1(Ωo). In what follows, we will not
distinguish a function v ∈ Vc from its restriction to the space
H1(Ωo). We also define the vector space for the Lagrange
multipliers as:

M =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

L2(Ωo), if β2 = 0

H1(Ωo)/R, if β1 = 0

H1(Ωo), otherwise

(18)

with associated norm:

‖µ‖M =
√√√√
∫

Ωo

β1µ2 + β2µ′2dx

Let the average of z on Ωo be denoted as:

z̄ =
no∑

i=1

li
|Ωo|

zi + zi−1

2

where no is the number of springs on Ωo. The restrictive
assumption that is made here is that the overlap region exactly
coincides with a given set of complete springs. In other words,
the domain Ωo is not allowed to only cover part of a spring.
We also introduce the seminorm | · |Vd on Vd as:

|z|Vd =
√√√√

m∑

i=1

ki (zi − zi−1)2

The norms on Vc and Vd are then chosen as:

‖v‖Vc =
√√√√
∫

Ωc

E |v′|2dx

‖z‖Vd =
√

|z|2Vd
+ δz̄2

(19)

where δ is a dimensionally consistent weighting constant that
we define below.
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We now introduce the product space X = Vc × Vd with
pairs of X denoted for example as U = (u, w), V = (v, z),
and with norm:

‖V ‖X =
√

‖v‖2
Vc

+ ‖z‖2
Vd

(20)

and define the kernel space of b(·, ·) as the subspace of X
such that:

X0 = {V ∈ X : b (µ, V ) = 0 ∀µ ∈ M} (21)

We wish to solve the following saddle point problem:

Find U ∈ X , λ ∈ M such that:

L(U, λ) = inf
V ∈X

sup
µ∈M

L (V, µ) (22)

where the Lagrangian reads:

L (V, µ) = 1

2
a (V, V ) + b (µ, V ) − l(V )

a (U, V ) =
∫

Ωc

αc Eu′v′dx

+
m∑

i=1

αi ki (wi − wi−1) (zi − zi−1)

b (µ, V ) =
∫

Ωo

β1µ(v − Π z) + β2µ
′(v − Π z)′dx

l(V ) = f zm

(23)

The saddle point problem (22) can be recast as:

Find U ∈ X , λ ∈ M such that:

a(U, V ) + b(λ, V ) = l(V ) ∀V ∈ X

b(µ, U ) = 0 ∀µ ∈ M

(24)

Problem (24) is well posed for β1 ≥ 0 and β2 > 0. This
result immediately follows from results in Ben Dhia and
Rateau [4,5]. Nevertheless, we choose to present here a detai-
led proof with the main objective of explicitly deriving the
constants associated with the problem in order to study the
influence of parameters such as the geometrical and material
properties, the coupling parameters β1 and β2, or length of the
overlap domain on the coupled solutions. Proofs of continuity
of the forms a(·, ·), b(·, ·), and l(·) are relatively straight-
forward and provided for completeness in Appendix B. We
show below that a(·, ·) is coercive and that the coupling term
b(·, ·) satisfies the Babuška–Brezzi condition [1,8]. Techni-
cal lemmas are presented in Appendix A. We conclude the
section by a theorem for the well-posedness of Problem (24),

summarize the continuity and inf-sup constants, and identify
from this analysis “optimal” constants β1, β2, and δ.

Lemma 1 (Coercivity of a) Let αc and αd be constant or
linear functions defined by (13)1 and (13)2. Then, with above
notation and definitions, there exists a constant γa > 0 such
that:

inf
U∈X0

sup
V ∈X0

|a (U, V )) |
‖U‖X‖V ‖X

> γa

sup
U∈X0

a (U, V ) > 0 ∀V ∈ X0, V �= 0

with

γa =
⎧
⎨

⎩

γ1 if β1 = 0

γ1 min

(
1

2
,

E |Ωo|
δ|Ωc|2

)
if β1 > 0

and

γ1 = 1

2
min

i

(
E

ki li
,

ki li
E

)

Proof It suffices to show that a(·, ·) is coercive on X0. Let
V = (v, z) ∈ X0. We first show that

a(V, V ) ≥ γ1

(
‖v‖2

Vc
+ |z|2Vd

)

where γ1 is a constant that depends on αc and αd being
constant or linear.

By definition of the bilinear form, and the fact that αc = 1
on Ωc\Ωo and αd = 1 on Ωd \Ωo, we have

a(V, V ) =
∫

Ωc

αc E(v′)2 dx +
m∑

i=1

αi ki (zi − zi−1)
2

=
∫

Ωc\Ωo

E(v′)2 dx +
m∑

i=no+1

ki (zi − zi−1)
2

+
∫

Ωo

αc E(v′)2 dx +
no∑

i=1

αi ki (zi − zi−1)
2

We then divide the overlap terms in half:

∫

Ωo

αc E(v′)2 dx +
no∑

i=1

αi ki (zi − zi−1)
2

= 1

2

⎛

⎜⎝
∫

Ωo

αc E(v′)2 dx +
no∑

i=1

αi ki (zi − zi−1)
2

⎞

⎟⎠

+ 1

2

⎛

⎜⎝
∫

Ωo

αc E(v′)2 dx +
no∑

i=1

αi ki (zi − zi−1)
2

⎞

⎟⎠

Next, we examine the continuum term and the discrete term
and show how they should be recombined. We use the fact
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that X0 consists of functions v and vectors z such that v = Π z
on Ωo (and therefore v′ = (Π z)′), and

(Π z)′ = zi − zi−1

li
, ∀x ∈ (xi−1, xi )

Then,

1

2

∫

Ωo

αc E(v′)2 dx = 1

2

no∑

i=1

xi∫

xi−1

αc E

(
zi − zi−1

li

)2

dx

= 1

2

no∑

i=1

E

(
zi − zi−1

li

)2
xi∫

xi−1

αc dx

≥ 1

2
min

i

(
E

ki li

) no∑

i=1

(1−αi ) ki (zi −zi−1)
2

Repeating the same procedure in opposite order on the dis-
crete term, we have

1

2

no∑

i=1

αi ki (zi −zi−1)
2 ≥ 1

2
min

i

(
ki li
E

)∫

Ωo

(1−αc)E(v′)2 dx

Substituting the previous two expressions into the original
expression and using the fact that αc + αd = 1 gives

a(V, V ) ≥
∫

Ωc\Ωo

E(v′)2 dx +
m∑

i=no+1

ki (zi − zi−1)
2

+ 1

2
min

(
1, min

i

(
E

ki li

)) no∑

i=1

ki (zi − zi−1)
2

+ 1

2
min

(
1, min

i

(
ki li
E

))∫

Ωo

E(v′)2 dx

≥ γ1

(
‖v‖2

Vc
+ |z|2Vd

)

and

γ1 = 1

2
min

i

(
E

ki li
,

ki li
E

)

Now, if β1 = 0, the result is immediate with γa = γ1. If
β1 is nonzero, we observe that the term |z|Vd vanishes for all
constant vectors z in Vd . Applying Poincaré inequality (cf.
Lemma A-1), we get

a(V, V ) ≥ γ1

(
1

2
‖v‖2

Vc
+ 1

2
‖v‖2

Vc
+ |z|2Vd

)

≥ γ1

(
1

2
‖v‖2

Vc
+ E

|Ωc|2 ‖v‖2
L2(Ωc)

+ |z|2Vd

)

Then using Lemma A-2, the fact that X0 consists of those
functions v and vectors z such that v = Π z, which implies
Π z = z, we observe that

‖v‖2
L2(Ωc)

≥ ‖v‖2
L2(Ωo)

≥ v̄2|Ωo| = z2|Ωo|

Thus, it follows that:

a(V, V ) ≥ γ1

(
1

2
‖v‖2

Vc
+ |z|2Vd

+ E |Ωo|
δ|Ωc|2 δz2

)

≥ γa‖V ‖2
X

where

γa = γ1 min

(
1

2
,

E |Ωo|
δ|Ωc|2

)

which completes the proof. 
�
Remark 1 Above proof also holds for the case αc = αd =
1/2, however it can be shown that the constant γ1 simply
reduces in that case to γ1 = 1/2.

Remark 2 Although we used the strong condition v = Π z
in second part of the proof, the weaker condition v = Π z
could have been used. This becomes important in the proof
of discrete coercivity, which is addressed later in the paper.

Remark 3 We have not proven the case where αc, αd are
cubic functions (13)3. We believe that this case yields coerci-
vity and could be proven with more sophisticated techniques.

Lemma 2 (Inf-sup condition for b) Let β2 > 0. Then, with
the above notation and definitions, there exists a constant
γb > 0 such that:

inf
µ∈M

sup
V ∈X

|b (µ, V ) |
‖µ‖M1‖V ‖X

> γb (25)

with

γb =

⎧
⎪⎪⎨

⎪⎪⎩

√
β2

E
β1 = 0

√
β2

E
min

(√
β1|Ωo|E

2δβ2
,

√
E

E + δ|Ωo|
)

β1 > 0

Proof This proof follows the proof given in [4,5]. It is suffi-
cient to show that

sup
V ∈X

|b (µ, V ) |
‖V ‖X

> γb‖µ‖M ∀µ ∈ M

Since µ ∈ M , µ(xa) is well defined and denoted by µa . Let
µ̂ = µ − µa . We introduce the extension operator S(µ) :
µ ∈ M → v̂ ∈ Vc such that v̂ = µ̂ on Ωo, and v̂ = 0 on
Ωc \Ωo. Furthermore, let ẑ be the constant vector ẑ = µa .
Thus, taking V̂ = (v̂, ẑ) we get

sup
V ∈X

|b (µ, V ) |
‖V ‖X

≥
∣∣∣b
(
µ, V̂

)∣∣∣

‖V̂ ‖X
= ‖µ‖2

M

‖V̂ ‖X

It suffices to show that ‖µ‖M/‖V̂ ‖X is greater than a positive
constant independent of µ. Using the definition of ‖ · ‖X , we
have

‖V̂ ‖2
X =

∫

Ωo

E(µ′)2 dx + δµ2
a = E |µ|2H1(Ωo)

+ δµ2
a
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Thus, if β1 = 0, we can fix µa = 0, and

‖V̂ ‖2
X = E

∫

Ωo

µ′2dx = E

β2
‖µ‖2

M

The inf-sup constant is then equal to γb = √
β2/E .

If β1 > 0, we can bound µa in terms of ‖µ‖L2(Ωo) and
|µ|2

H1(Ωo)
. Using the Poincaré inequality (since µ̂ = 0 at

x = xa), we get
∫

Ωo

µ2
adx =

∫

Ωo

(µ − µ̂)2dx ≤ 2
∫

Ωo

µ2 + µ̂2dx

≤ 2‖µ‖2
L2(Ωo)

+ |Ωo|2|µ̂|2H1(Ωo)

= 2‖µ‖2
L2(Ωo)

+ |Ωo|2|µ|2H1(Ωo)

Since
∫

Ωo

µ2
adx = |Ωo|µ2

a

we arrive at the inequality:

µ2
a ≤ 2

|Ωo| ‖µ‖2
L2(Ωo)

+ |Ωo||µ|2H1(Ωo)

Thus, substituting the bound for µa , we conclude that

‖V̂ ‖2
X ≤ 2δ

|Ωo| ‖µ‖2
L2(Ωo)

+ (E + δ|Ωo|) |µ|2H1(Ωo)

≤ max

(
2δ

β1|Ωo| ,
E + δ|Ωo|

β2

)
‖µ‖2

M

and, therefore,

γb =

⎧
⎪⎪⎨

⎪⎪⎩

√
β2

E
β1 = 0

√
β2

E
min

(√
β1|Ωo|E

2δβ2
,

√
E

E + δ|Ωo|
)

β1 > 0

and the proof is complete. 
�
Remark 4 We are not able to show the case for which β2 = 0.
Indeed, M would be the space L2(Ωo) and the extension
operator S(λ) is not defined in this case. This stems from the
fact that the space L2(Ωo) is not contained in H1(Ωo).

From the continuity and coercivity of a(·, ·), from the
continuity of l(·), and from the continuity and inf-sup condi-
tion of b(·, ·) (see Lemmas B-1, B-2, B-3, and Lemmas 1
and 2), we have the following theorem.

Theorem 1 Let β1 ≥ 0 and β2 > 0 and let αc and αd be
constant or linear. Then, problem (24) is well-posed, in the
sense that it admits a unique solution and that the solution
depends continuously on the data.

Finally, we summarize the constants obtained from conti-
nuity, coercivity, and B–B condition in Tables 1, 2 and 3. In
an effort to obtain optimality with respect to the constants, we

Table 1 Constants from continuity conditions

Ma 1

Mb
√

2 max

⎛

⎝
√

β1|Ωc|2 + 2β2

2E
,

√
β1|Ωo|

δ
,

√
β1|Ωo|2 + 2β2

2 mini ki li

⎞

⎠

Ml 2| f | max

(
1√
δ
,

1√
mini ki

)

Table 2 Constants from coerci-
vity and B–B conditions for the
case β1 = 0

γa
1

2
min

i

(
E

ki li
,

ki li
E

)

γb

√
β2

E

Table 3 Constants from coercivity and B–B conditions for the case
β1 > 0

γa
1

2
min

i

(
E

ki li
,

ki li
E

)
min

(
1

2
,

E |Ωo|
δ|Ωc|2

)

γb

√
β2

E
min

(√
β1|Ωo|E

2δβ2
,

√
E

E + δ|Ωo|

)

Table 4 Choice for the parame-
ters β1, β2, and δ β1

2E

|Ωc|2

β2 E

δ
E |Ωo|
|Ωc|2

choose specific values for β1, β2, and δ. In particular, we want
β1, β2, and δ to be dimensionally consistent in their respec-
tive terms while also optimizing the continuity constants (i.e.,
not depending on the size of the domains). Table 4 summa-
rizes the choice for the parameters β1, β2, and δ and Table 5
shows the resulting constants.

Remark 5 Note that the constants Mb and γd in Table 5 are
bounded above and below, respectively, by observing that
|Ωo| ≤ |Ωc|. Then:

Mb ≤ √
2 max

(
1,

√
E

mini ki li

)

γb ≥ 1

2

(26)

Since Ma and γa are independent of |Ωo| we can conclude
that the size of the overlap region will have only mild effects
on the accuracy and stability of the problem. However, from
this analysis, we see that the major influence of the size
will be in the constant Ml which increases as |Ωo| decrases.
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Table 5 Rescaled constants for continuity, coercivity, and B–B stability
for the case β1 > 0

Ma 1

Mb
√

2 max

⎛

⎝1,

√
E

2 mini ki li

(
1 + |Ωo|2

|Ωc|2
)⎞

⎠

Ml 2| f | max

( |Ωc|√
E |Ωo| ,

1√
mini ki

)

γa
1

4
min

i

(
E

ki li
,

ki li
E

)

γb

√
|Ωc|2

|Ωc|2 + |Ωo|2

Problem may arise if the spring stiffness varies rapidly from
one spring to the other and that the size of |Ωo| is taken too
small, say much smaller than the representative cell; a situa-
tion which in general is avoided from common sense. Recent
numerical experiments, presented for example in [17], have
indeed confirmed that the influence of |Ωo| on the error in
the approximation remains in general small.

4 Discrete formulation of the coupled model

Let V h
c and Mh be finite element subspaces of the vector

spaces Vc and M , respectively, and let Xh be the product
space Xh = V h

c × Vd . More precisely, the subspace V h
c

consists of piecewise linear continuous functions defined by
the set of nodes xi = ih, i = 0, . . . , N e, where N e denotes
the number of elements in the mesh. For the subspace Mh ,
we are faced with several choices since the elements associa-
ted with V h

c and Mh do not have to match (case (a) in Fig. 6).
However, for the sake of simplicity here, we will only consi-
der three special cases for Mh (see Fig. 6, cases (b), (c), and
(d)):

1. “Particle coupling”: Each node of the mesh associated
with Mh coincides with the position of one particle on
Ωo and vice-versa (case (b) in Fig. 6).

2. “Continuum coupling”: The elements of the mesh asso-
ciated with Mh are exactly identical with those of V h

c on
Ωo (case (c) in Fig. 6).

3. “RVE coupling”: The element size h for the continuum
solution are chosen arbitrarily from the equilibrium length
l of the particles, but the elements for Mh are equal to
the size, denoted ε, of the representative volume element
(RVE) (case (d) in Fig. 6). The continuum coupling can
then be viewed as a subcase of this case.

Finally, we write Uh = (uh, wh) and Vh = (vh, z) and intro-
duce the space Xh

0 as:

Ωo

a) General case
Ωc

Ωd

domain
Overlap

Ωo

Ωc

Ωd

b) Nodes on overlap region are aligned with particles

Ωo

Ωc

Ωd

Ωo coincide with those of Ωcc) Nodes on

Fig. 6 Finite element discretization of Ωc and Ωo (❙ = nodes on Ωc,
✕ = nodes on Ωd , ● = particles on Ωd )

Xh
0 =

{
Vh ∈ Xh : b (µh, Vh) = 0 ∀µh ∈ Mh

}
(27)

Then, problem (24) is approximated as follows:

Find Uh ∈ Xh , λh ∈ Mh such that:

a (Uh, Vh) + b (λh, Vh) = l(Vh) ∀Vh ∈ Xh

b (µh, Uh) = 0 ∀µh ∈ Mh

(28)

Remark 6 Although Vd is a finite-dimensional space and,
consequently does not need to be discretized using finite ele-
ments, we will use the notation wh to denote the solution of
the particle model in (28) to emphasize that wh indirectly
depends on the choice of V h

c and Mh .

4.1 Existence and uniqueness of solutions

In this section, we prove that the discretized Problem (28) is
well-posed. We shall review the lemmas of the previous sec-
tion in order to highlight the differences between the “conti-
nuous” and “discrete” problems. We omit consideration of
continuity of a(·, ·), b(·, ·), and l(·) as they follow trivially
(since Xh ⊂ X and Mh ⊂ M).

One difficulty in analyzing the discretized saddle point
problems is due to the fact that the kernel space Xh

0 is not a
subset of X0.
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Lemma 3 (Coercivity of a) Let αc = αd = 1/2. Then,
with the above notation and definition, there exists a constant
γ h

a > 0 such that:

inf
Uh∈Xh

0

sup
Vh∈Xh

0

a (Uh, Vh)

‖Uh‖X‖Vh‖X
≥ γ h

a

with γ h
a = γa.

Proof The proof is actually similar to the one shown in Lem-
ma 1. We just provide here a sketch of it.

We observe that functions Vh = (vh, z) in Xh
0 satisfy

b(µh, Vh) = 0, ∀µh ∈ Mh

i.e.,
∫

Ωo

β1vhµh + β2v
′
hµ′

hdx

=
∫

Ωo

β1(Π z)µh + β2(Π z)′µ′
hdx, ∀µh ∈ Mh

In other words, given a function z ∈ Vd , vh is simply viewed
as the projection of Π z on V h

c if Mh = V h
c . Take µh = 1 on

Ωo; then, if β1 �= 0,
∫

Ωo

vhdx =
∫

Ωo

(Π z)dx, ∀µh ∈ Mh

The averages of vh and Π z on Ωo are equal but the func-
tions are not necessarily identical unlike the continuous case.
However, if every particle on Ωo coincides with a node of
Mh (case (b) in Fig. 6), then vh = Π z. If not, only the equa-
lity of averages, as above, is necessary to show coercivity if
β1 �= 0 (see Remark 2). In the case where β1 = 0, coercivity
of the bilinear form is immediate. 
�
Remark 7 We do not show here coercivity of a(·, ·) in the
case where αc and αd are linear. The proof is of course
straightforward when using the particle coupling and essen-
tially follows the proof of Lemma 1 sincevh = Π z. However,
in the general case, the proof becomes very technical as the
elements of the space Xh

0 are not simple.

Lemma 4 (Inf-Sup condition for b) With above notation and
definitions, there exists a constant γ h

b > 0:

inf
µh∈Mh

sup
Vh∈Xh

b (µh, Vh)

‖µh‖M‖Vh‖X
≥ γ h

b

Proof Let µh ∈ Mh . Similarly to the continuous case, we
need to show that

sup
Vh∈Xh

|b (µh, Vh) |
‖Vh‖X

≥ γ h
b ‖µh‖M

with γ h
b > 0 independent of µh . We consider the two cases:

1. Continuum/RVE coupling: In this case, given µh ∈
Mh , we can always find a function v̂h ∈ V h

c such that
v̂h = µh − µa on Ωo and v̂h = 0 on Ωc\Ωo, where
µa = µh(xa). Furthermore, we can select ẑ = µa so
that V̂h = (v̂h, ẑ). Thus,

sup
Vh∈Xh

|b (µh, Vh) |
‖Vh‖X

≥
∣∣∣b
(
µh, V̂h

)∣∣∣

‖V̂h‖X

The proof then follows the one in Lemma 2 and we
conclude here that γ h

b = γb.
2. Particle coupling: In this case, we can always find a

vector ẑ ∈ Vd such that Π ẑ = µh on Ωo. On Ωd\Ωo,
ẑ is chosen as a constant vector so that V̂h = (0,Π ẑ).
Then:

sup
Vh∈Xh

|b (µh, Vh) |
‖Vh‖X

≥
∣∣∣b
(
µh, V̂h

)∣∣∣

‖V̂h‖X
= ‖µh‖2

M

‖ẑ‖Vd

We just need to show that ‖µh‖M/‖ẑ‖Vd is greater than
a positive constant. Since ẑ is constant on Ωd\Ωo, we
have (using Lemma A-2):

‖ẑ‖2
Vd

=
no∑

i=1

ki (ẑi − ẑi−1)
2 + δ

( no∑

i=1

li
|Ωo|

(
ẑi + ẑi−1

2

))2

≤ max
i

ki li |µh |2H1(Ωo)
+ δµ̄2

h

If β1 = 0, we can fix µ̄h = 0 so that:

‖ẑ‖2
Vd

≤ max
i

ki li |µh |2H1(Ωo)
= maxi ki li

β2
‖µh‖2

M

and γ h
b = √

β2/ maxi ki li .
If β1 is non-zero, then using Lemma A-2, we get

‖ẑ‖2
Vd

≤ max
i

ki li |µh |2H1(Ωo)
+ δ

|Ωo| ‖µh‖2
L2(Ωo)

≤ max

(
δ

β1|Ωo| ,
maxi ki li

β2

)

× (β1‖µh‖2
L2(Ωo)

+ β2|µh |2H1(Ωo)
)

= max

(
δ

β1|Ωo| ,
maxi ki li

β2

)
‖µh‖2

M

which completes the proof with:

γ h
b = min

(√
β1|Ωo|

δ
,

√
β2

maxi ki li

)


�
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Remark 8 We note that in the discrete case, the bilinear form
b(·, ·) does satisfy the inf-sup condition if β2 = 0. Indeed,
we can in this case bound the term |µh |H1(Ωo) by ‖µh‖L2(Ωo)

using an inverse inequality. However, the inf-sup constant
would be dependent on the mesh size h, and would go to
zero as h tends to zero.

Remark 9 We also note here that, as pointed out by Ben Dhia
and Rateau [7], the discretization of the Lagrange multiplier
space cannot be finer than the discretization of the continuum
model and the particle spacing. This can be seen from the
proof since we would not be able to find a vh or Π z that is
an extension of µh since it is possible vh �= µh in Ωo.

Finally, the following theorem follows from the continuity
on Xh and coercivity on Xh

0 of a(·, ·), from the continuity of
l(·) on Xh , and from the continuity and inf-sup condition of
b(·, ·) on Mh × Xh (see Lemmas B-1, B-2, B-3, and Lem-
mas 3 and 4):

Theorem 2 Problem (28) with β1 ≥ 0 and β2 > 0 and with
αc, αd constant or linear is well-posed, in the sense that the
solution to (28) exists, is unique, and depends continuously
on the data. Moreover, all constants are independent of h.

4.2 A priori error estimates

For completeness, we state the following a priori error esti-
mate. The proof follows exactly that of the traditional mixed
finite element error estimate [10].

Theorem 3 Let (u, w, λ) ∈ Vc × Vd × M be the solutions to
(24) and let (uh, wh, λh) ∈ V h

c × Vd × Mh be the solutions
to (28). Then,

‖(u − uh, w − wh)‖X ≤ C1 inf
vh∈V h

c

‖u − vh‖Vc

+ C2 inf
µh∈Mh

‖λ − µh‖M

‖λ − λh‖M ≤ C3 inf
vh∈V h

c

‖u − vh‖Vc + C4 inf
µh∈Mh

‖λ − µh‖M

where

C1 =
(

1 + Ma

γ h
a

)(
1 + Mb

γ h
b

)
, C2 = Mb

γ h
a

C3 = Ma

γ h
b

(
1 + Ma

γ h
a

)(
1 + Mb

γ h
b

)
,

C4 =
(

1 + Mb

γ h
b

+ Ma Mb

γ h
a γ h

b

)

5 Numerical examples

In all the following experiments, we consider the domain
Ω = (0, 3). Moreover, the force fm applied at xm is chosen

in such a way that the displacement at the right end of the
domain, when using the continuum model everywhere in Ω ,
is equal to unity. In what follows, we restrict ourselves to
the cases where the equilibrium lengths of the springs are all
equal.

5.1 Uniform springs coefficients with αc, αd constant

In the first set of experiments, we consider uniform springs
such that k = ki = 1, i = 1, . . . , m. In this simple case, the
solutions of the spring model and of the equivalent continuum
model in all of Ω are linear. The continuum model is used
in the subdomain Ωc = (0, 2) while the particle model is
used in Ωd = (1, 3) and the weight coefficients αc and αd

are chosen to be 1/2 in the overlap region. There are m = 8
springs in Ωd , i.e., nine particles. The equilibrium length of
each spring is then given by l = li = 0.25. We discretize
the continuum region with N e = 4 elements. Because the
springs are uniform, the representative cell used to derive the
corresponding Young’s modulus E is constituted of only one
spring. Then

E = kl = 1 × 0.25 = 0.25 (29)

We first consider the case where the two models are cou-
pled via a particle coupling, that is, the finite element space
Mh for the Lagrange multipliers is dictated by the particles.
As expected, this coupling ensures that the solutions of the
Arlequin problem (28) are linear and that the continuum part
exactly coincides with the particle solution over the overlap
region in the three cases corresponding to the L2 norm, H1

seminorm, and H1 norm couplings (Fig. 7). In these and sub-
sequent plots, the initials LM refers to Lagrange multiplier.
The solution at x = 3 is equal to unity in the three cases.

We repeat above experiment using this time a continuum
coupling, i.e., the elements in Mh are the same as in V h

c on
the overlap region. The coupling is therefore “weaker” than
in the preceding experiment. The computed displacement at
x = 3 is now zm = 1 for the H1 seminorm coupling, but
zm = 1.01042 in the other two cases (see Fig. 8).

5.2 Non-uniform stiffness coefficients with αc, αd constant

In more general settings, we are interested in problems in
which the spring coefficients are not necessarily uniform
but possibly randomly distributed. As a simple test case,
we consider here a periodic distribution of springs with two
spring stiffness constants k1 = 100 and k2 = 1. We have for
m even:

k2 j−1 = k1 j = 1, . . . , m/2

k2 j = k2 j = 1, . . . , m/2
(30)
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Fig. 7 Uniform spring coefficients with particle coupling and αc, αd
constant. The three graphs correspond to L2 norm, H1 seminorm, and
H1 norm coupling cases

As before, we consider the following geometry and discreti-
zation data: Ωc = (0, 2), Ωd = (1, 3) m = 8, and N e = 4.
The equilibrium length of the springs is once again equal
to l = li = 0.25. It follows that the Young’s modulus is
given by, using a representative cell (or representative volume
element, RVE) made of two consecutive springs:

E = k1k2

k1 + k2
2l = 100

101
0.5 = 0.49505 (31)
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Fig. 8 Uniform spring coefficients with continuum coupling and αc,
αd constant

Figure 9 shows the Arlequin solutions in the case of particle
coupling. It is not surprising that we find zm = 0.691822 in
the three cases of coupling since such a coupling is necessa-
rily too constraining.

In this problem, it is clear that the elements in Mh should
not be smaller than the representative cell used to derive the
continuum model. For the continuum coupling, we see that
the size of the elements in Mh is equal to the size of one
representative cell, i.e., h = 2l = 0.5. Figure 10 shows
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Fig. 9 Periodic distribution of spring coefficients with particle cou-
pling and αc, αd constant. The three graphs correspond to L2 norm, H1

seminorm, and H1 norm coupling cases

the results when using continuum coupling. We observe that
zm = 1 for the H1 seminorm coupling, but zm = 1.08727
and zm = 1.08710 for the L2 and H1 norm coupling, res-
pectively. We note here that in the H1 seminorm case, the
constant modes of Vd are fixed by setting z0 to be equal to
the displacement uh at xa .

Remark 10 We observe in Fig. 10 a slight change in the slope
of the continuum displacement u. This variation can be inter-
preted by writing the equilibrium equation at the interfacial
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Fig. 10 Periodic distribution of spring coefficients with continuum
coupling and αc, αd constant

point xa . We have:

E
du

dx

∣∣∣∣
x−

a

= αc E
du

dx

∣∣∣∣
x+

a

+ αdk1l1
w1 − w0

l1
(32)

Because αd = 1/2 here, and thus does not vanish at xa ,
nothing guarantees that the two derivatives should be the
same on the left and right sides of xa . This issue is there-
fore inherent to the choice αc and αd constant and should be
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Fig. 11 Same as Fig. 10 but with α linear

improved by the use of linear or cubic weight coefficients (see
next subsection). Note that this was also observed in [12].

5.3 Influence of the weight coefficient α

In this subsection, we study the effect of using linear and
cubic weight coefficients. We consider here the same case
as the one studied in the previous subsection with continuum
coupling. We show in Figs. 11 and 12 the results with α linear
and cubic, respectively. We now observe that the change in
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Fig. 12 Same as Fig. 10 but with α cubic

slope in the continuum displacement u is no longer visible
for the L2 and H1 norm couplings. However, a variation is
the slope has appeared for the H1 seminorm coupling. We
do not have an explanation for this behavior at this time.

The linear and cubic cases apparently provide similar
results to the naked eye. Actually, there exists a slight diffe-
rence. Indeed, the displacements of the particle at xm with the
L2 and H1 norm couplings are zm = 1.04084 for the linear
case and zm = 1.03707 for the cubic case. These values
are nevertheless greatly improved over the constant case for
which approximately zm = 1.087.
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Fig. 13 Same as Fig. 11 but with h = l/2 and element size for the
Lagrange multiplier (LM) equal to 2l = ε

5.4 Representative volume element

Our objective in this subsection is to show that the mesh size h
for the continuum solution can be chosen arbitrarily from the
equilibrium length l of the particles, but that it is important
to select the size of the elements for the Lagrange multiplier
at least equal to the size, denoted ε, of the representative
cell or volume element. Note that the continuum coupling
case then becomes a subcase of this configuration. We show
in Fig. 13 the results with α linear when h = l/2 and the

Table 6 Displacements zm at x = 3 for various mesh sizes and coupling
types

h L2 norm H1 seminorm H1 norm

1 1.04084 0.994358 1.04084

1/2 1.04084 0.964384 1.04084

1/4 – 1/32 0.930203 0.930203 0.930203

The equilibrium length of each spring is l = 0.0625

meshsize for the Lagrange multiplier is equal to ε, which in
this problem is simply 2l. The results are exactly identical
to the results obtained in Fig. 11 for the L2 and H1 norm
couplings. However, the behavior of the continuum solution
in the overlap region when using the H1 seminorm coupling
has the tendency to follow that of the particle solution. This
is attributed to the fact that this type of coupling does not
constrain enough the two displacement fields. In our opinion,
the H1 seminorm coupling should not be retained as a useful
candidate for this type of simulations.

5.5 Influence of mesh size

In this section, we study the effect of the mesh size on the
Arlequin solution. The equilibrium length of the springs is
the same as in Sect. 5.2 and we vary the size of the elements
in V h

c from h = 1 to h = 1/32. The stiffness of the springs is
the same as in Sect. 5.2 and we consider here the continuum
coupling.

We collect in Table 6 the displacements at x = 3 for the
different mesh sizes h and coupling types based on the L2

norm, H1 seminorm, and H1 norm. Here the weight coeffi-
cients αc and αd are chosen linear. For the L2 and H1 norms,
the displacement at x = 3 are constant for every value of
h until h = 1/4 and then the value remains constant again.
This shows that the solution is exact for every h ≤ 1/4 (i.e.,
the spacing of the particles), while for h > 1/4, the “ave-
rage” solution is linear and is resolved exactly with linear
elements. For the H1 seminorm, the results improve as h
decreases. Here, the solution is not exact due the constant
chosen (i.e., the solution match a point) so, as the mesh is
refined, the constraint becomes enforced more exactly, until
h ≤ 1/4 where the solution becomes exact.

We show in Figs. 11 and 14 the Arlequin solution and
Lagrange multiplier, respectively, for h = 1/2. The same
results for the case h = 1/8 are shown in Figs. 15 and 16 and
then for h = 1/32 in Figs. 17 and 18. Note that the Lagrange
multipliers are constant for the L2 and H1 norms cases, and
smooth for the H1 seminorm coupling when h = 1/2. For
the L2 norm, we observe that the Lagrange multiplier µh

displays larger and larger variations as the mesh is refined.
This result is commensurate with our theoretical results in the
sense that the discrete inf-sup constant goes to zero linearly
with h if β2 is set to zero. Note also how the linear α is reflec-
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Fig. 14 Lagrange multiplier solution in the case l = 1/4 and h = 1/2
using the continuum coupling and α linear

ted in the character of the Lagrange multiplier solution -
at the interface of the overlap and discrete domains, the
Lagrange multiplier solution is zero when h ≤ 1/4.

5.6 Reconstruction of solutions

In the overlap region, the Arlequin method produces two
solutions, one corresponding to the continuum model and
the other to the particle model. Neither of these two solu-
tions represents the solution of the problem at hand. It seems
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Fig. 15 Arlequin solution in the case l = 1/4 and h = 1/8 using the
continuum coupling and α linear

natural here to reconstruct a displacement field by combining
the two solutions on the overlap region. This can be done in
two ways. In the first one, we reconstruct a displacement field
as follows:

û(x) = αcuh(x) + αdΠ z(x), ∀x ∈ Ωo (33)

In the second one, a displacement vector is reconstructed as:

ẑi = αcuh(xi ) + αd zi , ∀i = 1, . . . , no (34)
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Fig. 16 Lagrange multiplier solution in the case l = 1/4 and h = 1/8
using the continuum coupling and α linear

We show in Fig. 19 the Arlequin solution and reconstruc-
ted solution in the case where a continuum coupling and H1

norm coupling, along with constant weight coefficients αc

and αd , are used. Here N e = 2, and there are eight springs
distributed over each element. We observe that the recons-
tructed solution is discontinuous at both end points of the
overlap domain and that the displacements display a rela-
tively erratic behavior in Ωo. We show the same results in
Fig. 20 with linear weight coefficients and the respective
solutions look much better.
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Fig. 17 Arlequin solution in the case l = 1/4 and h = 1/32 using the
continuum coupling and α linear

6 Conclusions

We have presented in this paper a technique to couple a par-
ticle model with a continuum model. The proposed approach
is essentially an extension of the Arlequin framework which
had been previously developed to couple partial differential
equation systems of different scales. We have given a detailed
mathematical analysis of the coupled one-dimensional pro-
blem and shown that the problem is well-posed when constant
weight coefficients and linear coefficients are chosen in the
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Fig. 18 Lagrange multiplier solution in the case l = 1/4 and h = 1/32
using the continuum coupling and α linear

overlap domain. However, it is not possible to show that the
inf-sup condition is satisfied when using a coupling constraint
based on the L2 norm. This tells us that it is insufficient to
enforce a constraint on the displacements only; this fact is
actually observed experimentally as the Lagrange multiplier
converges in this case to a distribution. We have also presen-
ted one-dimensional numerical examples with the objective
of showing that the proposed approach was well suited to
solve problems in which the spring constants in the particle
model could be non-uniformly distributed. In particular, we
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Fig. 19 Arlequin solution and reconstructed solution using a conti-
nuum coupling for the Lagrange multiplier and the H1 norm coupling
with α constant

considered a periodic system of two springs for which it is
straightforward to derive an equivalent continuum model. We
showed that the method produced satisfactory results as long
as the mesh size used to discretize the Lagrange multiplier
space was at least larger than (a multiple of) the size of the
representative cell defined to compute the Young’s modulus
for the continuum model.

The present study of the Arlequin method for the cou-
pling of particle and continuum models is by no means com-
plete. This is a very preliminary work and numerous issues
related to the method need to be addressed. For example,
one question is whether we can define a coupling constraint
that is explicitly dependent on the size of the representa-
tive cell (RVE) so that the formulation becomes fully inde-
pendent of the mesh size. It would also be interesting to see
how this method behaves in the case of nonlinear problems,
for example, by considering potentials of the Lennard–Jones
type. Finally, a major and important study will be to
investigate the use of the method for problems in dimen-
sions two and three and for time-dependent problems. We
shall strive to address these issues and propose answers to
these questions in forthcoming papers.
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Fig. 20 Arlequin solution and reconstructed solution using a conti-
nuum coupling for the Lagrange multiplier and the H1 norm coupling
with α linear
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Appendix A: Technical Lemmas

We first recall without proof the classical Poincaré inequality
in one dimension:

Lemma A-1 (Poincaré Inequality) Let v ∈ H1(Ωc). Then

‖v‖2
L2(Ωc)

≤ |Ωc|2
2

|v|2H1(Ωc)
≤ |Ωc|2

2E
‖v‖2

Vc
(35)

Lemma A-2 Let v ∈ H1(Ωo) and let v̄ be the average of v

on Ωo, i.e.,

v̄ = 1

|Ωo|
∫

Ωo

vdx

Then

|Ωo| v̄2 ≤ ‖v‖2
L2(Ωo)

≤ |Ωo| v̄2 + |Ωo|2
2

|v|2H1(Ωo)

Proof Let v ∈ H1(Ωo). We note that
∫

Ωo

(v − v̄)2dx =
∫

Ωo

v2 − 2vv̄ + v̄2dx

= ‖v‖2
L2(Ωo)

− 2v̄

∫

Ωo

vdx + v̄2|Ωo|

= ‖v‖2
L2(Ωo)

− v̄2|Ωo|
The first inequality follows by observing that the integral on
the left hand side is necessarily non-negative.

Let Ωo be represented as the interval (xa, xb). Since v is
continuous on Ωo, we know that there exists x̄ , xa ≤ x̄ ≤ xb

such that v(x̄) = v̄. We pose v = v̄ + y. Then

‖v‖2
L2(Ωo)

=
∫

Ωo

(v̄ + y)2dx

=
∫

Ωo

v̄2dx + 2v̄

∫

Ωo

ydx +
∫

Ωo

y2dx

= v̄2|Ωo| +
∫

Ωo

y2dx

as the average of y, by definition, is simply zero. Moreover,
since y vanishes at x̄ inΩo, we can use the Poincaré inequality
to find the bound:
∫

Ωo

y2dx ≤ |Ωo|2
2

|v|2H1(Ωo)

which completes the proof. 
�
Lemma A-3 Let z ∈ R

no+1 and let z̄ be the average of z on
Ωo. Then

z2
n0

≤ 2z̄2 + 2
n0∑

i=1

(zi − zi−1)
2

Proof Let z̄i , i = 1, . . . , no be defined as:

z̄i = li
|Ωo|

zi + zi−1

2

Thus,

z̄i − li
|Ωo|

zi − zi−1

2

= li
|Ωo| zi−1 = li

|Ωo|

(
zn0 −

n0∑

k=i

(zk − zk−1)

)
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that is:

li
|Ωo| zn0 = z̄i − li

|Ωo|

(
zi − zi−1

2
−

n0∑

k=i

(zk − zn0)

)

Summing over all terms in i = 1, . . . , n0, and noting that∑
z̄i = z̄ and

∑
i li = |Ωo|, we get:

zn0 = z̄ −
n0∑

i=1

li
|Ωo|

(
zi − zi−1

2
−

n0∑

k=i

(zk − zk−1)

)

= z̄ +
n0∑

i=1

[
1

|Ωo|

((
i−1∑

k=1

lk

)
+ li

2

)]
(zi − zi−1)

Therefore

|zn0 | ≤ |z̄| +
n0∑

i=1

[
1

|Ωo|

((
i−1∑

k=1

lk

)
+ li

2

)]
|zi − zi−1|

≤ |z̄| +
n0∑

i=1

|zi − zi−1|

which yields the desired result, using the fact that (a +b)2 ≤
2(a2 + b2) a, b ∈ R. 
�

Appendix B: Proof of Lemmas for the continuous
problem

B.1 Continuity of a

Lemma B-1 Let a(·, ·) be the bilinear form defined in (23).
Then, for all U = (u, w), V = (v, z) ∈ X, there exists a
constant Ma > 0 such that:

|a(U, V )| ≤ Ma‖U‖X‖(V )‖X

with Ma = 1.

Proof From Cauchy-Schwarz and Hölder inequalities, we
get

|a(U, V )| ≤
∫

Ωc

αc E |u′||v′| dx +
m∑

i=1

αi ki |wi − wi−1||zi − zi−1|

≤ C1‖u‖Vc‖v‖Vc + C2|w|Vd |z|Vd

where C1 = maxx (αc) = 1 and C2 = maxi (αi ) = 1. From
the definition of the norm in Vd , we then have:

|a(U, V )| ≤ ‖u‖Vc‖v‖Vc + ‖w‖Vd ‖z‖Vd ≤ ‖U‖X‖V ‖X

and Ma = 1. 
�

B.2 Continuity of b

Lemma B-2 Let b(·, ·) be as defined in (23). Then, for all
µ ∈ M, V = (v, z) ∈ X, there exists a constant Mb > 0
such that:

|b(µ, V )| ≤ Mb‖µ‖M‖V ‖X

with

Mb = 2 max

×
⎛

⎝
√

β1|Ωc|2 + 2β2

2E
,

√
β1

δ
|Ωo|,

√
β1|Ωo|2 + 2β2

2 mini ki li

⎞

⎠

Proof By making use of Poincaré inequality (35) and the fact
that (a + b)2 ≤ 2(a2 + b2), ∀a, b ∈ R, we get:

|b(µ, V )| ≤ ‖µ‖M‖v − Π z‖M

≤ ‖µ‖M (‖v‖M + ‖Π z‖M )

≤ √
2‖µ‖M

√
‖v‖2

M + ‖Π z‖2
M

Now,

‖v‖2
M = β1‖v‖2

L2(Ωo)
+ β2|v|2H1(Ωo)

≤ β1‖v‖2
L2(Ωc)

+ β2|v|2H1(Ωc)

≤ β1|Ωc|2 + 2β2

2E
‖v‖2

Vc

In the same way, using Lemma A-2 and the fact that Π z is a
piecewise linear continuous function, we have

‖Π z‖2
M = β1‖Π z‖2

L2(Ωo)
+ β2|Π z|2H1(Ωo)

≤ β1|Ωo| z2 +
(

β1
|Ωo|2

2
+ β2

)
|Π z|2H1(Ωo)

≤ β1

δ
|Ωo| δz2 +

(
β1|Ωo|2 + 2β2

2 mini ki li

)
|z|2Vd

≤ max

(
β1

δ
|Ωo|, β1|Ωo|2 + 2β2

2 mini ki li

)
‖z‖2

Vd

We combine above results and find

|b(µ, V )| ≤ Mb‖µ‖M‖V ‖X

with:

Mb = 2 max

⎛

⎝
√

β1|Ωc|2 + 2β2

2E
,

√
β1

δ
|Ωo|,

√
β1|Ωo|2 + 2β2

2 mini ki li

⎞

⎠


�

B.3 Continuity of l

Lemma B-3 Let l(·) be as defined in (23). Then, for all V ∈
X, there exists a constant Ml > 0 such that:

|l (V )| ≤ Ml‖V ‖X

with

Ml = 2| f | max

(
1√
δ
,

1√
mini ki

)
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Proof From definition of l(·), we have, with V = (v, z):

|l(V )| ≤ | f zm | ≤ | f ||zm | ≤ | f |
∣∣∣∣∣∣
zno +

m∑

i=no+1

(zi − zi−1)

∣∣∣∣∣∣

≤ | f |
√√√√2z2

no
+ 2

m∑

i=no+1

(zi − zi−1)2

Using Lemma A-3 yields:

|l(V )| ≤ | f |
√√√√4z̄2 + 4

no∑

i=1

(zi − zi−1)2 + 2
m∑

i=no+1

(zi − zi−1)2

≤ | f |
√√√√4

δ
δz̄2 + 4

mini ki

m∑

i=1

ki (zi − zi−1)2

≤ 2| f |
√

max

(
1

δ
,

1

mini ki

)
(|z|2Vd

+ z̄2)

It follows that

|l (V )| ≤ Ml‖z‖Vd ≤ Ml‖(v, z)‖X = Ml‖V ‖X

with

Ml = 2| f | max

(
1√
δ
,

1√
mini ki

)


�
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