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Course Description: The impressive progress experimented by
computer technologies and numerical methods has pushed the
frontier of predictive modelling. Powerful computer codes built
upon physics based sophisticated models are more and more em-
ployed in the analysis and design of complex systems within di↵er-
ent applied areas. The goal of this course is to give an introduction
to the rapidly expanding field of uncertainty quantification which
builds on probability, statistics, computation and large scale sim-
ulations. There is uncertainty in the mathematical model, in the
parameters, and in the initial and boundary data. How do these
uncertainties propagate and might hamper the reliability of o the
predictions of the computations? In the inverse problem, param-
eters are determined from measured data. What is the e↵ect of
the errors in the data on the parameter estimation? Some ba-
sic knowledge of random processes and di↵erential equations is
useful. Parameters in mathematical models based on di↵erential
equations will be estimated using frequentist and Bayesian tech-
niques. This course is given at graduate level.

Bibliography: R. C. Smith, Uncertainty Quantification, Theory,
Implementation and Applications, SIAM, Philadelphia, 2014.

SYLLABUS

1. Introduction to UQ with examples

2. Fundamentals of probability

3. Representation of random inputs

4. Bayesian view of parameter estimation

5. Uncertainty propagation in models

6. Applications
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Lecture 1: Motivation and Prototypical Examples 
“Essentially all models are wrong, but some are useful,”  
George E.P. Box, Industrial Statistician 

Prof. Ralph Smith  - Uncertainty Quantification for  Physical and Biological Models. NCSU - lectures



Simulation – Based Engineering Science 
“… Can computer predictions be used as a reliable tool bases 
for crucial decisions? How can one assess the accuracy or 
validity of  a computer  prediction? What confidence can be 
assigned  to a computer prediction of  a  complex event ?  “ 
 
                                                    Ivo Babuska and J. 
Tinsley Oden 



Why Models in Engineering? 
 
1.Quality Improvement –explore more designs, eliminate early physical 
model uncertainty, explore variation effects. 
 
2.Time Constraints/Demand –shorten time from Concept to Showroom 
 
3.Capital Reduction –minimal physical costs for iteration, hardware 
reduction 

John A. Cafeo 
General Motors Research & Development 

Industrial Perspective of  V&V in Engineering Decisions 
DecisionsIMAC 2009February, 2009 —Orlando, FL, USA 



Predictive Science 
Components: All involve uncertainty  

•  Experiments 

•  Models 

•  Numerical Simulation 

•  Quantity of Interest: usually a statistical quantity; e.g., mean 



Confiabilidade de Predição 
Computacional 



The Relationship Between Experiments and Simulations is Changing 
… 
 

 
 
• Old paradigm: Experiments are qualification tests, proof  that something does or does not �break�. 
Simulations are used to understand the behavior (generally, after the fact). 
 
• New paradigm: Experiments explore the mechanics and validate predictions. Simulations are used to 
predict, with quantifiable confidence and across the operational space. 
 
• Objective: Make decisions based on the predictions from validated science-based simulations. Validation 
requires an assessment of  the sources of  uncertainty (including lack-of-knowledge) and their effects on the 
predictions and decisions. 
 
 
 
 

Francois Hemez - Engineering Institute Spring 2006  - Los Alamos 



General Principles – Science-Based Prediction 
 
 
 
• Represent the geometry with the highest possible degree of  fidelity. 
 
• Implement models based on �first-principle physics� to describe the materials, 
initial conditions, boundary conditions, and forcing functions. 
 
• Develop algorithms and numerical solvers based on first-principle physics as 
opposed to approximations. 
 
• Couple multiple physics and/or multi length-scales. 
 
• Bridge the gap between the continuum (macroscopic) laws of  conservation, 
kinetic theory, molecular dynamics, and general / quantum relativistic physics. 
 
• Propagate the sources of  uncertainty (variability, lackof- knowledge) through 
numerical simulations. 
 
Francois Hemez - Engineering Institute Spring 2006  - Los Alamos 
 



Why is it Difficult? 
 
 
• Science-based prediction has been enabled by recent advances (within the last 20 
years) in programming languages, computer platforms, first-principle physics 
modeling, numerical algorithms, and visualization. 
 
• The difficulty is therefore shifting from being able to perform complex 
simulations to validating the models and assessing the degree of  credibility of  
predictions. 
 
• Science-based prediction is difficult because of  our lack of  understanding of  the 
sources of  variability, uncertainty, lack of  knowledge basic phenomena, and their 
effect on predictions. 
 
• Examples: Material damping, crack growth, radiation hydro-dynamics, weather 
prediction, pulsars, etc. 
 
Francois Hemez - Engineering Institute Spring 2006  - Los Alamos 
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Normas e Guias de Recomendacao  

Goal (from ASME Guide to V&V, 2006) 

To develop standards for assessing the correctness 
and credibility of modeling and simulation in 
computational science. 



Validation : a hierarchical approach 

Calibração 

 

Validação 
 

Acreditarão 
 



Example: Weather Models 
Physical Processes:  
•  Temperature 
•  Precipitation 
•  Winds  
•  Chemistry of aerosol species 

 Equations of Atmospheric Physics:  

“ First Principles” - Certain

Closure (phenomenological ) equations - different degrees of uncertainty



Example: Weather Models 

Equations of Atmospheric Physics:  

Phenomenological Model for Sources:  

where 



Example: Weather Models 

Sources of Uncertainty: 
•  Model errors or discrepancies 
•  Input uncertainties 
•  Numerical errors and uncertainties 
•  Measurement errors and uncertainties  

Steps: 

•  Model Calibration: Involves the assimilation 
or integration of data to quantify and update 
input uncertainties. 

•  Model Prediction: Here one computes the 
response along with statistics, error bounds, 
or PDF; extrapolation is important and difficult. 

•  Estimation of the Validation Regime:  

 

• Goal: Construct best estimate parameters 
and responses or quantities of interest with 
best estimate reduced uncertainties.  

  

 



Example: Weather Models 
Sources of Uncertainty: 
•  Model errors or discrepancies 
•  Input uncertainties 
•  Numerical errors and uncertainties 
•  Measurement errors and uncertainties  

Ensemble Forecasts: 

•  Run multiple simulations with differing parameter 
values or initial conditions drawn from 
appropriate pdf. 

•  A 50% chance of rain means that given present 
atmospheric conditions, half of simulations 
predict measurable rain amount at random point 
in specified area. 



Example 2: Pressurized Water Reactors (PWR) 

Models: 

•  Involve neutron transport, thermal-hydraulics, chemistry 

•  Inherently multi-scale, multi-physics 

  



Example 2: Pressurized Water Reactors (PWR) 
3-D Neutron Transport Equations:  

Challenges: 

•  Linear in the state but function of 7 
independent variables: 

 

•  Very large number of inputs or parameters; 
e.g., 100,000 

•  ORNL Code: Denovo; 

•  Codes can take hours to days to run.   



Example 2: Pressurized Water Reactors (PWR) 
Thermo-Hydraulic Model: Mass, momentum and energy balance for fluid  

Challenges: 

•  Nonlinear coupled PDE with nonphysical parameters due to closure relations; 

•  CASL code: COBRA-TF – Difficult to access primary parameters and inputs. 

•  Codes can take minutes to days to run.   

Note: Similar equations for gas 



Example 2: Pressurized Water Reactors (PWR) 
UQ Challenges: 

•   Specify bounds on void fraction distributions and boiling transitions that 
guarantee specified performance levels and safety margins. 

•  Specify conditions that limit CRUD on the outside of fuel cladding to within 
prescribed levels. 

•  Determine new cladding materials, fuel materials, and fuel pin geometries that 
provide an average specified improvement in performance and increased 
resistance to damage.  

•  Determine conditions that produce specified levels of radiation damage, 
mechanical thermal fatigue, and corrosion. 

 



Example 3: HIV Model for Characterization and Control Regimes 
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Ė = �E +
bE(T ⇤

1 + T ⇤
2 )

T ⇤
1 + T ⇤

2 +Kb
E � dE(T ⇤

1 + T ⇤
2 )

T ⇤
1 + T ⇤

2 +Kd
E � �EE

HIV Model: 

 

  

 

Compartments:  



Example 3: HIV Model for Characterization and Control Regimes 
HIV Model: Used for characterization and control treatment regimes. 

 

  

 

Ṫ1 = �1 � d1T1 � (1� ")k1V T1
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Parameters: Most are unknown and must be estimated from data  

 

  

 

�1 Target cell 1 production rate ⇢1 Ave. virions infecting type 1 cell

�2 Target cell 2 production rate ⇢2 Ave. virions infecting type 2 cell

d1 Target cell 1 death rate bE Max. birth rate immune effectors

d2 Target cell 2 death rate dE Max. death rate immune effectors

k1 Population 1 infection rate Kb Birth constant, immune effectors

k2 Population 2 infection rate Kd Death constant, immune effectors

c Virus natural death rate �E Immune effector production rate

� Infected cell death rate �E Natural death rate, immune effectors

" Population 1 treatment efficacy NT Virions produced per infected cell

m1 Population 1 clearance rate f Treatment efficacy reduction

m2 Population 2 clearance rate



Example 3: HIV Model for Characterization and Control Regimes 

HIV Model: Several sources of uncertainty including viral measurement techniques 
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Figure 2: Patient 6 CD4+ T-cell and viral load data, including censor points (lines at L̄1 =
400, L̄2 = 50) for viral load, and periods of on-therapy (solid lines on axis) and periods of oÆ-
therapy (dashed line on axis).

Of the 45 patients considered in this paper, sixteen (those numbered 2, 4, 5, 6, 9, 10, 13, 14, 15,
23, 24, 26, 27, 33, 46, and 47) spend 30–70% time oÆ treatment. Of these only patients 9, 15, and
47 do not spend appreciable time oÆ treatment during the early half of their observation period.

Due to the linear range limits described above, the clinical viral load assays eÆectively have
lower and upper limits of quantification. The upper limit is typically readily handled by repeatedly
diluting the sample until the resulting viral load measurement is in range and then scaling. The
lower limit, or left censoring point, however, directly influences the observed data. When a data
point is left-censored (below the lower limit of quantification), the only available knowledge is that
the true measurement is between zero and the limit of quantification L̄? for the assay. Those at
hand have two limits of quantification, L̄1 = 400 copies/ml for the standard and L̄2 = 50 copies/ml
for the ultra-sensitive assay. These are illustrated in sample data from patient 6 shown in Figure
2, where censored data points are those appearing identically on the horizontal censoring lines
L̄1 = 400, L̄2 = 50. A statistical methodology for handling this type of censored data is described
below in Section 3.2.

The observation times and intervals vary substantially between patients. The sample data in
Figure 2 also reveal that observations of viral load and CD4 may not have been made at the
same time points, so in general for patient number j we have CD4+ T-cell data pairs (tij1 , y

ij
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1, . . . , N
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1 and (potentially diÆerent) viral RNA data pairs (tij2 , y
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Example: Upper and lower limits to assay sensitivity  



Experimental Uncertainties and Limitations 
Examples: Experimental results are believed by everyone, except for the person 
who ran the experiment, Max Gunzburger, Florida State University.  

•  Pharmaceutical and disease treatment strategies often too dangerous or 
expensive for human tests or large segments of the population.   

•  Climate scenarios cannot be experimentally tested at the planet scale.  Instead, 
components such as volcanic forcing tested using measurements such as the 
1991 Mount Pinatubo data. 

•  Subsurface hydrology data very limited due to infeasibility of drilling large 
numbers of wells.  Result: significant uncertainty regarding subsurface structures. 

 



Model Errors 
Examples: Essentially, all models are wrong, but some are useful, George E.P. Box, 
Industrial Statistician 

•  Numerous components of weather and climate models --- e.g., aerosol-induced 
cloud formation, greenhouse gas processes --- occur on scales that are much smaller 
than numerical grids used to solve the atmospheric equations of physics.  These 
processes represent highly complex physics that is only partially understood.  

•  Many biological applications are coupled, complex, highly nonlinear, and driven by 
poorly understood or stochastic processes.   



Input Uncertainties 
Note: Essentially, all models are wrong, but some are useful, George E.P. Box, 
Industrial Statistician 

•  Phenomenological models used to represent processes such as turbulence in 
weather, climate and nuclear reactor models have nonphysical parameters whose 
values and uncertainties must be determined using measured data. 

•  Forcing and feedback mechanisms in climate models serve as boundary inputs.  
These parameterized phenomenological relations introduce both model and 
parameter uncertainties. 



Numerical Errors 
Note: Computational results are believed by no one, except the person who wrote 
the code, Max Gunzburger, Florida State University. 

•  Roundoff, discretization or approximation errors; e.g., mesh for nuclear subchannel 
code COBRA-TF is on the order of subchannel between rods. 

•  Bugs or coding errors; 

•  Bit-flipping, hardware failures and uncertainty associated with future exascale and 
quantum computing; 

•  Grids required for numerical solutions of field equations in applications such as 
weather or climate models (e.g., 50~km) are much larger than the scale of physics 
being modeled (e.g., turbulence or greenhouse gases). 

    



Steps in Uncertainty Quantification 

Note: Uncertainty quantification requires synergy between statistics, mathematics 
and application area.  

Fernando Rochinha
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Modeling Issues 

Computer Model 

Conceptual Model Computer 
Simulation 

Programming 

Analysis 

Model Verification 

Model 
Validation 

Model Qualification 
Reality 



Verification Process 

Verification Test 

Conceptual Model 

Computational 
Model 

Computational 
Solution 

`Correct� Answer 

 
• Analytic solutions 

• Highly resolved 
numerical 
solutions 

• Benchmark 
solutions 

Verification: The process of determining that a model implementation 
accurately represents the developer�s conceptual description of the 
model and the solution to the model. 

Note: Verification deals with mathematics 



Validation Process 

Validation 
Process 

Real World 

Conceptual 
Model 

Computational 
Model 

Computational 
Solution 

`Correct� Answer 
Provided by 
Experimental Data 

• Benchmark cases 

• System analysis 

• Statistical analysis 

Validation: The process of determining the degree to which a model is an 
accurate representation of the real world from the perspective of the intended 
model users. 

Note: Validation deals with physics and statistics 



Validation Metrics 

Experiment Model 
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