INTRODUCTION TO UNCERTAINTY QUANTIFICATION IN
PREDICTIVE COMPUTATIONAL MODELS

Professor: Fernando Rochinha
Mechanical and Nanotechnology Engineering - COPPE
Universidade Federal do Rio de Janeiro

Course Description: The impressive progress experimented by
computer technologies and numerical methods has pushed the
frontier of predictive modelling. Powerful computer codes built
upon physics based sophisticated models are more and more em-
ployed in the analysis and design of complex systems within differ-
ent applied areas. The goal of this course is to give an introduction
to the rapidly expanding field of uncertainty quantification which
builds on probability, statistics, computation and large scale sim-
ulations. There is uncertainty in the mathematical model, in the
parameters, and in the initial and boundary data. How do these
uncertainties propagate and might hamper the reliability of o the
predictions of the computations? In the inverse problem, param-
eters are determined from measured data. What is the effect of
the errors in the data on the parameter estimation? Some ba-
sic knowledge of random processes and differential equations is
useful. Parameters in mathematical models based on differential
equations will be estimated using frequentist and Bayesian tech-
niques. This course is given at graduate level.

Bibliography: R. C. Smith, Uncertainty Quantification, Theory,
Implementation and Applications, SIAM, Philadelphia, 2014.
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5. Uncertainty propagation in models
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Lecture 1: Motivation and Prototypical Examples

“Essentially all models are wrong, but some are useful,”
George E.P. Box, Industrial Statistician
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Simulation — Based Engineering Science

Simulation - Based
Engineering Science

Revolutionizing Engineering Science
through Simulation

May 2006

Report of the National Science Foundation
Blue Ribbon Panel on
Simulation-Based Engineering Science

If an industry is o
replace testing with
simulation, the
simulation fools must
undergo robust
verification and
validation procedures

for effecfiveness.

Simulation has become
indispensable in
predictive methods for
weather, climate change,
and behavior of the
atmosphere; and in
broad areas of
engineering analysis and

design.




Why Models in Engineering?

1.Quality Improvement —excplore more designs, eliminate early physical
model uncertainty, explore variation effects.

2. Time Constraints/ Demand —shorten time from Concept to Showroom

3.Capital Reduction —minimal physical costs for iteration, hardware

reduction




Predictive Science

Components: All involve uncertainty

* Experiments
* Models

* Numerical Simulation

» Quantity of Interest: usually a statistical quantity; e.g., mean
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Verification

Model Calibration

\and Validation
Numerical
Simulations

Quantity of Interest (Qol)




Confiabilidade de Predicao
Computacional

VALIDATION ACTIVITIES \ VERIFICATION ACTIVITIES
Validation experiments

Software quality assurance
Hierarchical experiments SIMULATION CREDIBILI Static testing

Validation simulations ondeterministic Results Dynamic testing .
Validation metrics Zadlt;oggl arﬂulalylt‘l;ql solutions
Spatial discretization error anufactured solutions
szporal discretization Order of accuracy assessment

UNCERTAINTY QUANTIFICATION

Parametric uncertainty Normal environments
Model form uncertainty Abnormal environments
Sensitivity analysis Hostile environments
Extrapolation uncertainty




* Old paradigm: Excperiments are qualification tests, proof that something does or does not “break”.
Simulations are used to understand the behavior (generally, after the fact).

* New paradigm: Experiments explore the mechanics and validate predictions. Simulations are used to
predict, with quantifiable confidence and across the operational space.

* Obyjective: Make decisions based on the predictions from validated science-based simulations. | alidation
requires an assessment of the sources of uncertainty (including lack-of-knowledge) and their effects on the

predictions and decisions.




* Represent the geometry with the highest possible degree of fidelity.

« Implement models based on “first-principle physics” to describe the materials,
initial conditions, boundary conditions, and forcing functions.

* Develop algorithms and numerical solvers based on first-principle physics as
opposed to approximations.

* Couple multiple physics and/or multi length-scales.

* Bridge the gap between the continuum (macroscopic) laws of conservation,
kinetic theory, molecular dynamics, and general / quantum relativistic physics.

* Propagate the sources of uncertainty (variability, lackof- knowledge) through
numerical simulations.




* Science-based prediction has been enabled by recent advances (within the last 20
years) in programming languages, computer platforms, first-principle physics
modeling, numerical algorithms, and visualization.

* The difficulty is therefore shifting from being able to perform complex
simulations to validating the models and assessing the degree of credibility of
predictions.

* Science-based prediction is difficult because of our lack of understanding of the
sources of variability, uncertainty, lack of knowledge basic phenomena, and their

effect on predictions.

* Examples: Material damping, crack growth, radiation hydro-dynamics, weather
prediction, pulsars, etc.




WWhat Does it Mean to be “Predictive’”?

- Models and their predictions are validated when, in
addition to assessing fidelity-to-data, the effect on
predictions of our lack-of-knowledge is quantified.

- What is very challenging is to assess the effect that all
the uncertainty (all of it, not just parameter variability)

has on predictions.
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What is Model Validation?

“The process of determining the degree to which a
computer simulation is an accurate representation of
the real world, from the perspective of the intended

uses of the model.”
—DoD Modeling and Simulation

—DoE ASC Program

“Solving the right equations.”
—Roache (1998)

“The substantiation that a model within its domain of

applicability possesses a satisfactory range of
accuracy consistent with the intended applications of

the model.”

—Schlesinger (1979)
lm
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Validation : a hierarchical approach
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Example: Weather Models

Physical Processes: atiscio-tonetiocd

« Temperature

. STRE Vertical Grid
Precipitation Height or Pressure) |—

 Winds

« Chemistry of aerosol species Physical Processes in & Mode! e

Equations of Atmospheric Physics: AmuosPHERE
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Example: Weather Models

Equations of Atmospheric Physics:

Op B
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Phenomenological Model for Sources:
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Example: Weather Models

Sources of Uncertainty:

* Model errors or discrepancies

* |nput uncertainties

» Numerical errors and uncertainties
 Measurement errors and uncertainties

Steps:

* Model Calibration: Involves the assimilation
or integration of data to quantify and update
input uncertainties.

* Model Prediction: Here one computes the
response along with statistics, error bounds,
or PDF; extrapolation is important and difficult.

 Estimation of the Validation Regime:

*Goal: Construct best estimate parameters
and responses or quantities of interest with

Observable Quantity

Horizontal Grid
(Latitude-Longitude)

Vertical Grid )
(Height or Pressure) |

Assimilation Period Forecast Period

best estimate reduced uncertainties.

=0 Present Future

Time



Example: Weather Models

Sources of Uncertainty:

Model errors or discrepancies

Input uncertainties

Numerical errors and uncertainties

Measurement errors and uncertainties

Ensemble Forecasts:

Run multiple simulations with differing parameter

values or initial conditions drawn from

appropriate pdf.

A 50% chance of rain means that given present
atmospheric conditions, half of simulations

predict measurable rain amoy
in specified area.
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Example 2: Pressurized Water Reactors (PWR)

Containment Structure

Pressurizer Steam

|
/ ~
Control l
Rods <
Reactor
Vessel
[ Condenser
Models:

* Involve neutron transport, thermal-hydraulics, chemistry

* Inherently multi-scale, multi-physics



Example 2: Pressurized Water Reactors (PWR)

3-D Neutron Transport Equations:
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Challenges:

* Linear in the state but function of 7
independent variables:

r=ua,Y,2, £, =0,¢;t

* Very large number of inputs or parameters;

e.g., 100,000 “Gﬁd?
o
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« Codes can take hours to days to run. 8 i roa #" Fuel tube
s Il Fuel rod



Example 2: Pressurized Water Reactors (PWR)

Thermo-Hydraulic Model: Mass, momentum and energy balance for fluid

0
@(afpf) + V- (aspsvp) = T

ov
afpf(’)_tf +aspsve - Vog+V - 0? +asV -0+ arVps

= —FR _F+T(vy—v,)/2+ aspsg

0
o (appres) +V - (agpresvp +Th) = (Ty — Ty)H + Ty Ay

ot
—Ty(H—agV - -h)+ h-VT —Tley + T¢(s* — sy)]
O I
—Dpf (a—; + V- (afvp) + —> - .
Pf Note: Similar equations for gas
Challenges:

« Nonlinear coupled PDE with nonphysical parameters due to closure relations;
« CASL code: COBRA-TF — Difficult to access primary parameters and inputs.

« Codes can take minutes to days to run.



Example 2: Pressurized Water Reactors (PWR)

UQ Challenges:

Specify bounds on void fraction distributions and boiling transitions that
guarantee specified performance levels and safety margins.

Specify conditions that limit CRUD on the outside of fuel cladding to within
prescribed levels.

Determine new cladding materials, fuel materials, and fuel pin geometries that

provide an average specified improvement in performance and increased
resistance to damage.

Determine conditions that produce specified levels of radiation damage,
mechanical thermal fatigue, and corrosion.

Containment Structure

Pressurizer Steam
Generator
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Example 3: HIV Model for Characterization and Control Regimes

HIV Model: Th=M—diTh —(1—e)ka VT
Ty = Xg — doTs — (1 — fe)ko VT
Tr = (1 — )k VT — 0TF — m ET}
Ty = (1 — fe)koVTy — 6Ty — moETy
V =Npd(T; +T5) —cV — [(1 —e)pikaTy + (1 — fe)pakaTo]V

be(T7 +15) dp(Ty +1T5)
B —

1Y +T5 4+ Ky T +T15 + Ky

Compartments:

M

Uninfected Infectious Infected Non-infectious Immune Effectors
Target Cells  Virus Target Cells Virus (CTLs)



Example 3: HIV Model for Characterization and Control Regimes
HIV Model: Used for characterization and control treatment regimes.
Thv=M—diTh — (1 —e)ka VT
Ty =Xy —doTs — (1 — fe)ko VT
TF = (1 — &)k VTy — 0TF — m ET}
T3 = (1 — fe)koVTy — 6Ty — moETy
V =NpS(TF +T5) —cV — [(1 —e)p1ka Ty + (1 — fe)pokoTo|V

b (T +715) dp(T7 +T5)
F —

E=\g+
P LTy 4+ K, Ty + T + Ky

E—4pFE

Parameters: Most are unknown and must be estimated from data

A1 Target cell 1 production rate p1 Ave. virions infecting type 1 cell
Ao Target cell 2 production rate po  Ave. virions infecting type 2 cell
d, Target cell 1 death rate bp  Max. birth rate immune effectors
d,  Target cell 2 death rate drp  Max. death rate immune effectors
k1  Population 1 infection rate K, Birth constant, immune effectors
ko  Population 2 infection rate K,; Death constant, immune effectors
¢  Virus natural death rate Ar  Immune effector production rate
0 Infected cell death rate d0g  Natural death rate, immune effectors
e  Population 1 treatment efficacy | N Virions produced per infected cell
my Population 1 clearance rate f  Treatment efficacy reduction
ms  Population 2 clearance rate




Example 3: HIV Model for Characterization and Control Regimes

HIV Model: Several sources of uncertainty including viral measurement techniques

Example: Upper and lower limits to assay sensitivity
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Experimental Uncertainties and Limitations

Examples: Experimental results are believed by everyone, except for the person
who ran the experiment, Max Gunzburger, Florida State University.

* Pharmaceutical and disease treatment strategies often too dangerous or
expensive for human tests or large segments of the population.

* Climate scenarios cannot be experimentally tested at the planet scale. Instead,
components such as volcanic forcing tested using measurements such as the
1991 Mount Pinatubo data.

» Subsurface hydrology data very limited due to infeasibility of drilling large
numbers of wells. Result: significant uncertainty regarding subsurface structures.
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Model Errors

Examples: Essentially, all models are wrong, but some are useful, George E.P. Box,
Industrial Statistician

* Numerous components of weather and climate models --- e.g., aerosol-induced
cloud formation, greenhouse gas processes --- occur on scales that are much smaller

than numerical grids used to solve the atmospheric equations of physics. These
processes represent highly complex physics that is only partially understood.

« Many biological applications are coupled, complex, highly nonlinear, and driven by
poorly understood or stochastic processes.
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Input Uncertainties

Note: Essentially, all models are wrong, but some are useful, George E.P. Box,
Industrial Statistician

* Phenomenological models used to represent processes such as turbulence in
weather, climate and nuclear reactor models have nonphysical parameters whose
values and uncertainties must be determined using measured data.

* Forcing and feedback mechanisms in climate models serve as boundary inputs.
These parameterized phenomenological relations introduce both model and
parameter uncertainties.
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Numerical Errors

Note: Computational results are believed by no one, except the person who wrote
the code, Max Gunzburger, Florida State University.

* Roundoff, discretization or approximation errors; e.g., mesh for nuclear subchannel
code COBRA-TF is on the order of subchannel between rods.

* Bugs or coding errors;

» Bit-flipping, hardware failures and uncertainty associated with future exascale and
quantum computing;

 Grids required for numerical solutions of field equations in applications such as
weather or climate models (e.g., 50~km) are much larger than the scale of physics
being modeled (e.g., turbulence or greenhouse gases).
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Steps in Uncertainty Quantification

Note: Uncertainty quantification requires synergy between statistics, mathematics

and application area.

Input Representation

Local Sensitivity Analysis

Global Sensitivity Analysis

| I

Parameter Selection

— | Model Discrepancy

T

Surrogate Models

Sparse Grids |—>

Model Calibration

|

|

Stochastic Spectral Methods

I

Uncertainty Propagation

Sparse Grids
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Modeling Issues

Model Qualification

[ Reality I
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Analysis

A 4

Conceptual Model ]
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Validation Computer

Simulation

v Programming

{Computer Model f

Model Verification




Verification Process

Conceptual Model

/ S

: "Correct’” Answer
Computational
Model *Analytic solutions
*Highly resolved
v numerical
Computational | . solutions
Solution Verification Test 'Benphmark
solutions

Verification: The process of determining that a model implementation
accurately represents the developer’ s conceptual description of the
model and the solution to the model.

Note: Verification deals with mathematics



Validation Process

Real World
Conceptual
Model “Correct’ Answer
l Provided by
Experimental Data
Computational
Model *Benchmark cases
*System analysis
A\ 4
Computational |« ,| eStatistical analysis
Solution Validation
Process

Validation: The process of determining the degree to which a model is an
accurate representation of the real world from the perspective of the intended
model users.

Note: Validation deals with physics and statistics



Validation Metrics
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