

Finite Element Analysis for Mechanical and Aerospace Design

Cornell University, Fall 2009

Nicholas Zabaras Materials Process Design and Control Laboratory Sibley School of Mechanical and Aerospace Engineering 101 Rhodes Hall Cornell University Ithaca, NY 14853-3801

Intro to FEM: The direct approach

- Consider a linear spring with `nodes' 1 and 2: F_1 F_2 F_2
- The force on the spring at node 1 is: $F_1 = k(\delta_1 \delta_2)$
- Similarly the force at node 2: $F_2 = k(\delta_2 \delta_1)$

$$F_1 = k(\delta_1 - \delta_2) = -F_2$$

• We can re-write the above equations in matrix form as: $[F_1] = [k - k] [\delta_1]$

$$\begin{cases} F_1 \\ F_2 \end{cases} = \begin{bmatrix} k & -k \\ -k & k \end{bmatrix} \begin{cases} \delta_1 \\ \delta_2 \end{cases}$$

The direct approach

• We can generalize this equation for a linear spring as: $\begin{cases} F_1 \\ F \end{cases} = \begin{bmatrix} k_{11} & k_{12} \\ k & k \end{bmatrix} \begin{cases} \delta_1 \\ \delta \end{cases}$

 k_{ij} : force on ith node induced by a unit displacement in the jth node

 Let us consider the analysis of the following loaded system of linear springs (each with 2 nodes)

- This system has 4 linear spring elements and there are 4 global nodes.
- Node 1 is fixed but node 4 can slide under the (known) applied load *F*.

We are interested to compute the nodal displacements δ_1 , δ_2 , δ_3 , δ_4

• We know the behavior of each `element', e.g.

$$\begin{cases} F_1^{(1)} \\ F_2^{(1)} \end{cases} = \begin{bmatrix} k_{11}^{(1)} & k_{12}^{(1)} \\ k_{21}^{(1)} & k_{22}^{(1)} \end{bmatrix} \begin{cases} \delta_1^{(1)} \\ \delta_2^{(1)} \end{cases}$$

Element	Local Node	Global Node
1	1	1
	2	2

- $\delta_1^{(1)} \longrightarrow$ Displacement of local node 1 of element 1
- $\delta_2^{(1)} \longrightarrow$ Displacement of local node 2 of element 1

• For `element' 2:

$$\begin{cases} F_1^{(2)} \\ F_2^{(2)} \end{cases} = \begin{bmatrix} k_{11}^{(2)} & k_{12}^{(2)} \\ k_{21}^{(2)} & k_{22}^{(2)} \end{bmatrix} \begin{cases} \delta_1^{(2)} \\ \delta_2^{(2)} \end{cases}$$

Element	Local Node	Global Node
2	1	2
	2	3

- $\delta_1^{(2)} \longrightarrow$ Displacement of local node 1 of element 2
- $\delta_2^{(2)} \longrightarrow$ Displacement of local node 2 of element 2

• For `element' 3:

$$\begin{cases} F_1^{(3)} \\ F_2^{(3)} \end{cases} = \begin{bmatrix} k_{11}^{(3)} & k_{12}^{(3)} \\ k_{21}^{(3)} & k_{22}^{(3)} \end{bmatrix} \begin{cases} \delta_1^{(3)} \\ \delta_2^{(3)} \end{cases}$$

Element	Local Node	Global Node
3	1	2
	2	3

- $\delta_1^{(3)} \longrightarrow$ Displacement of local node 1 of element 3
- $\delta_2^{(3)} \longrightarrow$ Displacement of local node 2 of element 3

• For `element' 4:

$$\begin{cases} F_1^{(4)} \\ F_2^{(4)} \end{cases} = \begin{bmatrix} k_{11}^{(4)} & k_{12}^{(4)} \\ k_{21}^{(4)} & k_{22}^{(4)} \end{bmatrix} \begin{cases} \delta_1^{(4)} \\ \delta_2^{(4)} \end{cases}$$

Element	Local Node	Global Node
4	1	3
	2	4

- $\delta_1^{(4)} \longrightarrow$ Displacement of local node 1 of element 4
- $\delta_2^{(4)} \longrightarrow$ Displacement of local node 2 of element 4

Connectivity matrix

Summary

- We use d_1, d_2, d_3, d_4 from now on to denote the global degrees of freedom.
- Let us re-write each of these equations to include in the displacement vector all nodal displacements of our system

Local to global transformation

$$\begin{cases} F_{1}^{(1)} \\ F_{2}^{(1)} \\ F_{2}^{(1)} \\ F_{2}^{(2)} \\ F_{2}^{(2)}$$

MAE 4700 – FE Analysis for Mechanical & Aerospace Design N. Zabaras (9/1/2009)

Local to global transformation

MAE 4700 – FE Analysis for Mechanical & Aerospace Design N. Zabaras (9/1/2009)

Assembly: $[K] = \sum_{e} [K]^{(e)}, [F] = \sum_{e} [F]^{(e)}$

- $\begin{bmatrix} k_{11}^{(1)} & k_{12}^{(1)} & 0 & 0 \\ k_{21}^{(1)} & k_{22}^{(1)} + k_{11}^{(2)} + k_{11}^{(3)} & k_{12}^{(2)} + k_{12}^{(3)} & 0 \\ 0 & k_{21}^{(2)} + k_{21}^{(3)} & k_{22}^{(2)} + k_{22}^{(3)} + k_{11}^{(4)} & k_{12}^{(4)} \\ 0 & 0 & k_{21}^{(4)} & k_{21}^{(4)} & k_{22}^{(4)} \end{bmatrix} \begin{bmatrix} d_1 \\ d_2 \\ d_3 \\ d_4 \end{bmatrix} = \begin{bmatrix} F_1^{(1)} \\ F_2^{(1)} + F_1^{(2)} + F_1^{(3)} \\ F_2^{(2)} + F_2^{(3)} + F_1^{(4)} \\ F_2^{(2)} + F_2^{(3)} + F_1^{(4)} \\ F_2^{(4)} \end{bmatrix}$
- What contributes to the global stiffness component K_{ij}, i.j=1,4?
 ✓ Elements between nodes i and j.

Assembly: $[K] = \sum_{e} [K]^{(e)}, [F] = \sum_{e} [F]^{(e)}$

 What contributes to the global stiffness component K_{ii}, i=1,4?
 ✓ Elements that share node *i*.

 $[K] = \sum [K]^{(e)}, [F] = \sum [F]^{(e)}$ **Assembly:**

What is the total force acting on nodes 2 and 3?

MAE 4700 – FE Analysis for Mechanical & Aerospace Design N. Zabaras (9/1/2009)

- We have 4 equations with 5 unknowns: d_1, d_2, d_3, d_4, F_r
- We have not yet used the boundary condition: $d_1 = 0$

Displacement calculation

- $\begin{bmatrix} k_{22}^{(1)} + k_{11}^{(2)} + k_{11}^{(3)} & k_{12}^{(2)} + k_{12}^{(3)} & 0 \\ k_{21}^{(2)} + k_{21}^{(3)} & k_{22}^{(2)} + k_{22}^{(3)} + k_{11}^{(4)} & k_{12}^{(4)} \\ 0 & k_{21}^{(4)} & k_{22}^{(4)} \end{bmatrix} \begin{bmatrix} d_2 \\ d_3 \\ d_4 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ F \end{bmatrix}$
- This 3x3 system of eqs can be solved for: d_2, d_3, d_4
- Once you do that, how do you compute the reaction force at node 1?

Reaction force calculation

 Return to the 1st equation in the assembled system before the application of the boundary condition:

MAE 4700 – FE Analysis for Mechanical & Aerospace Design N. Zabaras (9/1/2009) 20

Non-zero displacement at node 1: $\delta_1 = \alpha$

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ k_{21}^{(1)} & k_{22}^{(1)} + k_{11}^{(2)} + k_{11}^{(3)} & k_{12}^{(2)} + k_{12}^{(3)} & 0 \\ 0 & k_{21}^{(2)} + k_{21}^{(3)} & k_{22}^{(2)} + k_{22}^{(3)} + k_{11}^{(4)} & k_{12}^{(4)} \\ 0 & 0 & k_{21}^{(4)} & k_{21}^{(4)} & k_{22}^{(4)} \end{bmatrix} \begin{bmatrix} d_1 & \alpha \\ d_2 \\ d_3 \\ d_4 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ F \end{bmatrix} \Rightarrow 4x4 \text{ system of Eqs}$$

Non-zero displacement at node 1: $\delta_1 = \alpha$

$$\begin{bmatrix} k_{22}^{(1)} + k_{11}^{(2)} + k_{11}^{(3)} & k_{12}^{(2)} + k_{12}^{(3)} & 0 \\ k_{21}^{(2)} + k_{21}^{(3)} & k_{22}^{(2)} + k_{22}^{(3)} + k_{11}^{(4)} & k_{12}^{(4)} \\ 0 & k_{21}^{(4)} & k_{22}^{(4)} \end{bmatrix} \begin{bmatrix} d_2 \\ d_3 \\ d_4 \end{bmatrix} = \begin{bmatrix} -k_{21}^{(1)}\alpha \\ 0 \\ F \end{bmatrix} \Rightarrow 3x3 \text{ system of Eqs}$$

• The reaction force can be computed as before:

$$\begin{bmatrix} k_{11}^{(1)} \ k_{12}^{(1)} \ 0 \ 0 \end{bmatrix} \begin{cases} \alpha \\ d_2 \\ d_3 \\ d_4 \end{cases} = F_r \Longrightarrow F_r = k_{11}^{(1)} \ \alpha + k_{12}^{(1)} d_2$$

 Γ (1)

MAE 4700 – FE Analysis for Mechanical & Aerospace Design N. Zabaras (9/1/2009) 22

Consider $k_{ii}^{(e)} = k, k_{ij}^{(e)} = k_{ji}^{(e)} = -k$, for all elements $e, i.e. K^{(e)} = \begin{vmatrix} k - k \\ -k \end{vmatrix}$

$$\begin{bmatrix} 3k & -2k & 0 \\ -2k & 3k & -k \\ 0 & -k & k \end{bmatrix} \begin{bmatrix} d_2 \\ d_3 \\ d_4 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ F \end{bmatrix} \Rightarrow \begin{bmatrix} d_1 \\ d_2 \\ d_3 \\ d_4 \end{bmatrix} = \begin{bmatrix} 0 \\ F/k \\ 3F/2k \\ 5F/2k \end{bmatrix}$$

• The reaction force can then be computed as:

$$F_r = k_{12}^{(1)}d_2 = -k F/k = -F!$$

$$[K] = \sum_{e} [K]^{(e)}, [F] = \sum_{e} [F]^{(e)}$$

- In the equations above, we imply that the element stiffness [K]^(e) and load vectors [F]^(e) are already written in the expanded global node format.
- How do we write the above assembly process if we want to use element stiffness [K]^(e) expressed in the local node format?

Recall that e.g. element 1 in local format:

$$F_{1}^{(1)} \\ F_{2}^{(1)} \} = \underbrace{\begin{bmatrix} k_{11}^{(1)} & k_{12}^{(1)} \\ k_{21}^{(1)} & k_{22}^{(1)} \end{bmatrix}}_{[K^{(1)}]} \underbrace{\{\delta_{1}^{(1)} \\ \delta_{2}^{(1)} \\ \{d^{(1)}\}}_{\{d^{(1)}\}} \equiv \begin{bmatrix} K^{(1)} \end{bmatrix} \{d^{(1)} \}$$

- We can write the following transformations: $\{d^{(1)}\} = \begin{cases} \delta_1^{(1)} \\ \delta_2^{(1)} \end{cases} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \begin{cases} d_1 \\ d_2 \\ d_3 \\ d_4 \end{cases} = \begin{bmatrix} L^{(1)}]\{d\}, \quad \begin{cases} F_1^{(1)} \\ F_2^{(1)} \\ 0 \\ 0 \end{cases} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{cases} F_1^{(1)} \\ F_2^{(1)} \\ F_2^{(1)} \\ 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} L^{(1)}]^T \{F^{(1)}\} \end{cases}$
 - Note that the matrix $[L^{(1)}]^T$ scatters the nodal forces into the global nodal form

- But we have seen that from equilibrium of each node: $\begin{cases}
 F_1^{(1)} \\
 F_2^{(1)} \\
 0 \\
 0
 \end{cases} + \begin{cases}
 0 \\
 F_1^{(2)} \\
 F_2^{(2)} \\
 0
 \end{cases} + \begin{cases}
 0 \\
 F_1^{(3)} \\
 F_2^{(3)} \\
 0
 \end{cases} + \begin{cases}
 0 \\
 0 \\
 F_1^{(4)} \\
 F_2^{(4)} \\
 F_2^{(4)}
 \end{cases} = \begin{cases}
 F_r \\
 0 \\
 0 \\
 F
 \end{cases} = \{f\}$
- If we call the applied external force vector simply {f}, we can summarize the above as:

$$\sum_{e} [\underline{L}^{(e)}]^{T} \{ \underline{F}^{(e)} \} = \{ \underline{f} \}$$

Return to the element equations

$$\{F^{(e)}\} = \begin{cases} F_1^{(e)} \\ F_2^{(e)} \end{cases} = \begin{bmatrix} k_{11}^{(e)} & k_{12}^{(e)} \\ k_{21}^{(e)} & k_{22}^{(e)} \end{bmatrix} \begin{cases} \delta_1^{(e)} \\ \delta_2^{(e)} \end{cases} \equiv [K^{(e)}] \{d^{(e)}\}$$

and the transformations:

• Combining these 3 Eqs gives: $\sum_{e} [L^{(e)}]^T [K^{(e)}] \{d^{(e)}\} = \{f\} \Rightarrow$

 $\sum [L^{(e)}]^T [K^{(e)}] [L^{(e)}] \{d\} = \{f\} \implies \{f\} = [K] \{d\}, \quad where \quad [K] = \sum [L^{(e)}]^T [K^{(e)}] [L^{(e)}] [L^$

MAE 4700 – FE Analysis for Mechanical & Aerospace Design N. Zabaras (9/1/2009) 27

2x4

This is indeed what we used before!

MAE 4700 – FE Analysis for Mechanical & Aerospace Design N. Zabaras (9/1/2009)

$$\sum_{e} [L^{(e)}]^{T} \{F^{(e)}\} = \{f\} \quad [K] = \sum_{e} [L^{(e)}]^{T} [K'^{(e)}] [L^{(e)}]$$
$$[K] \{d\} = \{f\}$$

• We remind you that [K^(e)] is the e-element stiffness in global nodal notation and [K^(e)] the e-element stiffness in local element nodal notation.

Another example

- For the spring system above, compute the
 - global stiffness and force vector
 - partition the system and solve for the nodal displacements
 - compute the reaction forces

An example

MAE 4700 – FE Analysis for Mechanical & Aerospace Design N. Zabaras (9/1/2009)

An example

• We partition and apply BCs: $d_1 = d_2 = 0$

$$k \begin{bmatrix} 6 & -2 \\ -2 & 3 \end{bmatrix} \begin{cases} d_3 \\ d_4 \end{cases} = \begin{cases} 50Nt \\ 0 \end{cases} \Longrightarrow \begin{cases} d_3 \\ d_4 \end{cases} = \frac{1}{k} \begin{cases} 10.7143 \\ 7.1429 \end{cases} Nt$$

An example

• Compute the reaction forces: $k \begin{bmatrix} -3 & -1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} d_3 \\ d_4 \end{bmatrix} = \begin{cases} r_1 \\ r_2 \end{bmatrix} \Rightarrow \begin{cases} r_1 \\ r_2 \end{bmatrix} = \begin{cases} -39.286 \\ -10.714 \end{bmatrix} Nt$

