

Finite Element Analysis for Mechanical and Aerospace Design

Cornell University, Fall 2009

Nicholas Zabaras Materials Process Design and Control Laboratory Sibley School of Mechanical and Aerospace Engineering 101 Rhodes Hall Cornell University Ithaca, NY 14853-3801

A refresher on beam bending

- Beams are different from truss structures in that they are designed to resist transverse loads.
- The tranverse loads are transported to the supports of the beam via extensional action.
- There are several beam models \succ depending on the assumptions employed. We herein consider the Bernoulli-Euler beam theory usually introduced in introductory statics courses.
- We assume that normals to the middle line of the beam remain straight and normal.
- This will allow us to approximate the displacements u_x, u_y at a given point.

Bernoulli-Euler beam theory

> The x-component of the displacement \mathcal{U}_{x} through the depth of the beam is given as:

 $u_r = -y\sin\theta(x)$

where $\theta(x)$ is the rotation of the middle line (positive counterclockwise) at x and y is the distance from the middle line.

We assume that
$$u_y(x, y) = u_y(x)$$
.

> For θ (x) small, sin θ = θ ,

$$\theta = \frac{du_y(x)}{dx}$$

Thus we conclude:

$$u_x = -y \frac{du_y}{dx} \Rightarrow \varepsilon_x = \frac{du_x}{dx} = -y \frac{d^2 u_y}{dx^2} = -y \kappa$$

curvature

Displacements im Bernoulli-Euler Beam model

In summary, the following displacements are considered:

$$\begin{bmatrix} u_x(x,y) \\ u_y(x,y) \end{bmatrix} = \begin{bmatrix} -y \frac{du_y(x)}{dx} \\ u_y(x) \end{bmatrix} = \begin{bmatrix} -y\theta \\ u_y(x) \end{bmatrix}$$

Stress and moment calculation

$$\varepsilon_x = -y \frac{d^2 u_y}{dx^2}$$

From Hooke's law, we can compute the axial stress as: 0

$$\sigma_x = E\varepsilon_x = -Ey\frac{d^2u_y}{dx^2}$$

With integration, we can now compute the bending moment as follows:

MAE 4700 – FE Analysis for Mechanical & Aerospace Design N. Zabaras (9/15/2009) 5

p(x)

Note: For $\sigma_{r} > 0$,

M < 0

Midline (neutral axis)

Moments on a differential beam element

Sign convention The *M* and *V's* and load q as shown are positive (pay attention to planes with positive and negative normal vectors)

• Let us apply balance of moments on this differential beam element around x=y=0

$$-M + (V + \frac{dV}{dx}dx)dx + \left(M + \frac{dM}{dx}dx\right) + \frac{dx}{2}q(x + \frac{dx}{2})dx = 0$$

From which we conclude that: $V = -\frac{dM}{dx}$

Forces on a differential beam element

 Let us apply balance of vertical forces on this differential beam element

$$\left(V + \frac{dV}{dx}dx\right) - V + q(x)dx = 0$$

• From which we conclude that: $q = -\frac{dV}{dx}$

Differential equation for the beam

$$M(x) = EI\frac{d^2u_y}{dx^2}, V = -\frac{dM}{dx} = -\frac{d}{dx}\left(EI\frac{d^2u_y}{dx^2}\right), \quad q = -\frac{dV}{dx} = \frac{d^2}{dx^2}\left(EI\frac{d^2u_y}{dx^2}\right)$$

- The differential equation is 4th order for the vertical displacement u_v of the middle line.
- As a result, two boundary conditions are needed at each end!
- Variables that are conjugate in the sense of work (shear force V and \mathcal{U}_{v} , moment M and rotation θ), cannot be both prescribed on the same boundary (same end of the beam).
 - Γ_{V} : boundary with prescribed V

$$\Gamma_{V} \cap \Gamma_{u} = 0, \Gamma_{V} \cup \Gamma_{u} = \Gamma$$
$$\Gamma_{M} \cap \Gamma_{\theta} = 0, \Gamma_{M} \cup \Gamma_{\theta} = \Gamma$$

- Γ_{u} : boundary with prescribed u_{v}
- Γ_{M} : boundary with prescribed M
- Γ_{θ} : boundary with prescribed θ
- Γ : whole boundary (both ends)

Boundary conditions

These boundary conditions take the following forms:

- The given \overline{M} and V are defined (our choice) positive when acting counterclockwise and in the positive ydirection, respectively.
- The normal $n=\pm 1$ is introduced in the last two conditions to maintain consistency with our sign convention for V and M (discussed further below).

Boundary conditions

These boundary conditions take the following forms:

• For example, if $\overline{M} > 0$ is prescribed on the right end (*n*=1), then $M \equiv EI \frac{d^2 u_y}{dx^2} = \overline{M}$. If $\overline{M} > 0$ is prescribed on the left end (*n*=-1), then: $M \equiv EI \frac{d^2 u_y}{dx^2} = -\overline{M}$. Similarly for \overline{V} .

Boundary conditions for beams

- Free end with an applied load:
- $Mn = \overline{M} \quad on \quad \Gamma_{M},$ $Vn = \overline{V} \quad on \quad \Gamma_{V}.$

• Simple support:

$$\begin{array}{c}
\overline{u}_{y} = 0 \quad on \quad \Gamma_{u}, \\
\overline{M} = 0 \quad on \quad \Gamma_{M}.
\end{array}$$

• Clamped support:

$$\overline{u}_{y} = 0 \quad on \quad \Gamma_{u},$$
$$\overline{\theta} = 0 \quad on \quad \Gamma_{\theta}.$$

Potential energy of a beam element: P^e=U^e-W^e

$$M(x) = EI\frac{d^2u_y}{dx^2}, V = -\frac{dM}{dx} = -\frac{d}{dx}\left(EI\frac{d^2u_y}{dx^2}\right), \quad q = -\frac{dV}{dx} = \frac{d^2}{dx^2}\left(EI\frac{d^2u_y}{dx^2}\right)$$

Using these, let us compute the potential energy of `a beam element' of length L^e (to be defined shortly in more detail).

• Strain energy:
$$U^e = \int_{\Omega_e} \frac{E^e \varepsilon_x^2}{2} dV = \int_{\Omega_e} \frac{E^e (\kappa y)^2}{2} dA dx = \int_{L^e} \frac{E^e}{2} \int_{A^e} y^2 dA \kappa^2 dx$$

- For this strain energy to make sense as an integral, we need to introduce an approximation (interpolation) for u_y^e such that $d^2 u_y^e / dx^2$ is square integrable (C¹ continuity)
- From now-on, we simply denote with Ω^e the xdimensional domain of a beam element e of length L^e (to be defined later in more detail)

• External work:
$$W = \sum_{e} \left\{ \int_{\Omega^{e}} q(x)u_{y}^{e}(x)dx + \overline{V}u_{y}^{e}(x)|_{\Gamma_{V}^{e}} + \overline{M}\theta_{y}^{e}(x)|_{\Gamma_{M}^{e}} \right\}$$

 $U^{e} = \int_{C^{e}} \frac{E^{e} I^{e}}{2} \kappa^{2} dx = \int_{C^{e}} \frac{E^{e} I^{e}}{2} (\frac{d^{2} u^{e}}{dx^{2}})^{2} dx$

C¹ continuity

• Displacement u_y that is C¹ continuous: Both u_y and $\theta = \frac{du_y}{dx'}$ are continuous.

• Displacement u_y that is C⁰ continuous: u_y is continuous but $\theta = \frac{du_y}{dx}$ is discontinuous.

 \mathcal{U}_{v}

Two-noded beam element

• The corresponding conjugate nodal forces are:

- We need interpolation for both displacements and slopes at the ends of the beam (C¹ continuity)
- Our element degrees of freedom are taken as the following:

$$\{f^{e}\} = \begin{cases} F_{y1} \\ M_{1} \\ F_{y2} \\ M_{2} \end{cases} \quad \text{Note that:} \quad \begin{cases} d^{e} \\ M_{I} \neq M(X_{I}), \\ I = 1, 2 \end{cases} \quad \begin{cases} u_{y1} \\ \theta_{1} \\ u_{y2} \\ \theta_{2} \end{cases}$$

Two-noded beam element: Sign conventions

- Please note the convention for positive nodal displacements and slopes at both ends (positive y-axis - upwards and counterclockwise, respectively)
- As a result, the notation for the conjugate nodal forces is as follows: F_{v1}, F_{v2}

are positive when they point in the positive y-axis

 M_{v1}, M_{v2} are positive when they are anticlockwise

Interpolation functions for 2-noded beam element

• We interpolate the deflection along the beam using the following Hermite interpolation functions for beam elements.

$$N_{u1} = \frac{1}{4} (1 - \xi)^2 (2 + \xi)$$
$$N_{\theta 1} = \frac{L^e}{8} (1 - \xi)^2 (1 + \xi)$$
$$N_{u2} = \frac{1}{4} (1 + \xi)^2 (2 - \xi)$$
$$N_{\theta 2} = \frac{L^e}{8} (1 + \xi)^2 (\xi - 1)$$

$$u_y^e(x) = \begin{bmatrix} N_{u1} & N_{\theta 1} & N_{u2} \end{bmatrix}$$

$$u_{y}^{e}(x) = [N^{e}] \{ d^{e} \}$$
row vector column vector

How the interpolation functions are computed?

$$x = \frac{L^{e}}{2}(1+\xi) + x_{1}^{e}, \quad -1 \le \xi \le 1$$

$$\xi = \frac{2(x-x_{1}^{e})}{L^{e}} - 1, \quad -1 \le \xi \le 1$$

$$u_{y1}$$

$$u_{y1}$$

$$\frac{1}{L^{e}}$$

$$\frac{1}{2}$$

$$\frac{1}$$

• We are looking for an approximation of the form:

$$u_{y}(x) = a_{0} + a_{1}\xi + a_{2}\xi^{2} + a_{3}\xi^{3} = \begin{bmatrix} 1 & \xi & \xi^{2} & \xi^{3} \end{bmatrix} \begin{bmatrix} a_{0} \\ a_{1} \\ a_{2} \\ a_{3} \end{bmatrix}$$
$$\frac{du_{y}(x)}{d\xi} = a_{1} + 2a_{2}\xi + 3a_{3}\xi^{2}$$

 We compute by interpolation using the values of deflection and slope at the ends of the element:

$$\begin{cases} \xi = -1 \colon u_{y} \mid_{\xi=-1} = u_{y_{1}}, u_{y_{1}} = a_{0} - a_{1} + a_{2} - a_{3} \\ \xi = -1 \colon \frac{du_{y}}{d\xi} \mid_{\xi=-1} = \frac{du_{y}}{dx} \mid_{x=x_{1}} \frac{L^{e}}{2} = \theta_{1} \frac{L^{e}}{2}, \frac{L^{e}}{2} \theta_{1} = a_{1} - 2a_{2} + 3a_{3} \\ \xi = 1 \colon u_{y} \mid_{\xi=1} = u_{y_{2}}, u_{y_{2}} = a_{0} + a_{1} + a_{2} + a_{3} \\ \xi = 1 \colon \frac{du_{y}}{d\xi} \mid_{\xi=1} = \frac{du_{y}}{dx} \mid_{x=x_{2}} \frac{L^{e}}{2} = \theta_{2} \frac{L^{e}}{2}, \frac{L^{e}}{2} \theta_{2} = a_{1} + 2a_{2} + 3a_{3} \end{cases} \Rightarrow \begin{cases} a_{0} \\ a_{1} \\ a_{2} \\ a_{3} \end{cases} = \begin{bmatrix} 1/2 & L^{e}/8 & 1/2 & -L^{e}/8 \\ -3/4 & -L^{e}/8 & 3/4 & -L^{e}/8 \\ 0 & -L^{e}/8 & 0 & L^{e}/8 \\ 1/4 & L^{e}/8 & -1/4 & L^{e}/8 \end{bmatrix} \begin{bmatrix} u_{y_{1}} \\ \theta_{1} \\ u_{y_{2}} \\ \theta_{2} \end{bmatrix}$$

How the interpolation functions are computed?

$$x = \frac{L^{e}}{2}(1+\xi) + x_{1}^{e}, \quad -1 \le \xi \le 1$$

$$\xi = \frac{2(x-x_{1}^{e})}{L^{e}} - 1, \quad -1 \le \xi \le 1$$

$$u_{g1}$$

$$u_{g1}$$

$$\frac{1}{L^{e}}$$

$$\frac{1}{2}$$

$$\frac{1}$$

• With substitution, we obtain:

$$u_{y}(x) = \begin{bmatrix} 1 & \xi & \xi^{2} & \xi^{3} \end{bmatrix} \begin{bmatrix} 1/2 & L^{e}/8 & 1/2 & -L^{e}/8 \\ -3/4 & -L^{e}/8 & 3/4 & -L^{e}/8 \\ 0 & -L^{e}/8 & 0 & L^{e}/8 \\ 1/4 & L^{e}/8 & -1/4 & L^{e}/8 \end{bmatrix} \begin{bmatrix} u_{y1} \\ \theta_{1} \\ u_{y2} \\ \theta_{2} \end{bmatrix}$$

• This can finally be simplified as:

$$u_{y}(x) = \begin{bmatrix} \frac{1}{2} - \frac{3}{4}\xi + \frac{1}{4}\xi^{3} \\ \frac{1}{N_{u1}} \end{bmatrix} \underbrace{\frac{L^{e}}{2} \left(\frac{1}{4} - \frac{1}{4}\xi - \frac{1}{4}\xi^{2} + \frac{1}{4}\xi^{3} \right)}_{N_{\theta1}} \underbrace{\frac{1}{2} + \frac{3}{4}\xi - \frac{1}{4}\xi^{3}}_{N_{u2}} \end{bmatrix} \underbrace{\frac{L^{e}}{2} \left(-\frac{1}{4} - \frac{1}{4}\xi + \frac{1}{4}\xi^{2} + \frac{1}{4}\xi^{3} \right)}_{N_{\theta2}} \begin{bmatrix} u_{y1} \\ \theta_{1} \\ u_{y2} \\ \theta_{2} \end{bmatrix}}$$

MAE 4700 – FE Analysis for Mechanical & Aerospace Design N. Zabaras (9/15/2009) 18

Interpolation functions for 2-noded beam element

 $N_{u1} = \frac{1}{4} (1 - \xi)^2 (2 + \xi)$

 $N_{\theta 1} = \frac{L^{e}}{8} (1 - \xi)^{2} (1 + \xi)$

 $N_{u2} = \frac{1}{4} (1 + \xi)^2 (2 - \xi)$

 $N_{\theta 2} = \frac{L^{e}}{2} (1+\xi)^{2} (\xi-1)$

Use change rule to find derivatives with respect to *x*, e.g.

$$\frac{dN_{u1}}{dx} = \frac{dN_{u1}}{d\xi} \frac{d\xi}{dx}$$

$$\frac{dN_{u1}}{d\xi} = -\frac{3}{4}(1-\xi^2)$$

 $\frac{d\xi}{dx} = \frac{2}{L^e}$

Continuity of displacements

Note that at ξ =-1 (left node), $u_v^e(left node) = u_{v_1}$. Similarly at the right node.

Continuity of slopes

• Note that at ξ =-1 (left node), $\theta^e(left node) = \theta_1$. Similarly at the right node.

Curvature calculation

$$\sum_{u_{q_{1}}} x = \frac{L^{e}}{2}(1+\xi) + x_{1}^{e}, -1 \le \xi \le 1$$

$$\xi = \frac{2(x-x_{1}^{e})}{L^{e}} - 1, -1 \le \xi \le 1$$

$$\xi = \frac{2(x-x_{1}^{e})}{L^{e}} - 1, -1 \le \xi \le 1$$

$$\sum_{u_{q_{1}}} u_{u_{q_{2}}} x$$

$$= \operatorname{energy. Starting from:}$$

$$\theta^{e}(x) = \frac{du_{y}}{dx} = \left[\frac{dN_{u1}}{dx} - \frac{dN_{u1}}{dx} - \frac{dN_{u2}}{dx} - \frac{dN_{u2}}{dx}\right] \{d^{e}\} \Rightarrow$$

$$N_{u1} = \frac{1}{4}(1-\xi)^{2}(2+\xi)$$

$$N_{\theta1} = \frac{L^{e}}{8}(1-\xi)^{2}(1+\xi)$$

$$N_{u2} = \frac{1}{4}(1+\xi)^{2}(2-\xi)$$

$$N_{\theta2} = \frac{L^{e}}{8}(1+\xi)^{2}(\xi-1)$$

$$We will need to also
compute the curvature
$$energy. Starting from:$$

$$energy. Starting from:$$

$$\frac{d^{2}u_{y}^{e}}{dx^{2}} = \left[\frac{d^{2}N_{u1}}{dx^{2}} - \frac{d^{2}N_{u2}}{dx^{2}} - \frac{d^{2}N_{\theta2}}{dx^{2}}\right] \{d^{e}\} \Rightarrow$$

$$N_{\theta2} = \frac{L^{e}}{8}(1+\xi)^{2}(\xi-1)$$

$$\frac{d^{2}u_{y}^{e}}{dx^{2}} = \frac{1}{L^{e}}\left[\frac{6\xi}{L^{e}} - 3\xi - 1 - \frac{6\xi}{L^{e}} - 3\xi + 1\right] \{d^{e}\} \Rightarrow$$

$$\frac{d^{2}u_{y}^{e}}{dx^{2}} = \left[\frac{d^{2}u_{y}^{e}}{dx^{2}} - \frac{1}{L^{e}}\left[\frac{d^{2}u_{y}^{e}}{dx^{2}} - \frac{1}{L$$$$

MAE 4700 – FE Analysis for Mechanical & Aerospace Design N. Zabaras (9/15/2009)

Strain energy calculation

- Recall that: $U^e = \int_{\Omega^e} \frac{E^e I^e}{2} (\frac{d^2 u_y^e}{dx^2})^2 dx$
- Thus with our Hermite interpolation, $\frac{d^2 u_y^e}{dx^2} = [B^e]\{d^e\}$ we can write:

$$U^{e} = \frac{1}{2} \{d^{e}\}^{T} \int_{\Omega^{e}} [B^{e}]^{T} E^{e} I^{e} [B^{e}] dx^{e} \{d^{e}\}^{T}$$
Beam element stiffness

Recall that $\{d^e\} = [L^e]\{d\}$ (from global to local degrees of freedom), so the assembly of the strain energy term will give: $U = \frac{1}{2} \{d\}^T \sum_{e} ([L^e]^T \int_{-1}^{1} [B^e]^T E^e I^e [B^e] \frac{L^e}{2} d\xi [L^e]) \{d\}$ Jacobian

MAE 4700 – FE Analysis for Mechanical & Aerospace Design N. Zabaras (9/15/2009)

dx

Element stiffness

For constant E^eI^e on the element, the stiffness [K^e] is given as (use direct integration):

$$K^{e} = \frac{E^{e}I^{e}}{2L^{e^{3}}} \int_{-1}^{1} \begin{bmatrix} 36\xi^{2} & 6\xi(3\xi-1)L^{e} & -36\xi^{2} & 6\xi(3\xi+1)L^{e} \\ 6\xi(3\xi-1)L^{e} & (3\xi-1)^{2}L^{e^{2}} & -6\xi(3\xi-1)L^{e} & (9\xi^{2}-1)L^{e^{2}} \\ -36\xi^{2} & -6\xi(3\xi-1)L^{e} & 36\xi^{2} & -6\xi(3\xi+1)L^{e} \\ 6\xi(3\xi+1)L & (9\xi^{2}-1)L^{e^{2}} & -6\xi(3\xi+1)L^{e} & (3\xi+1)^{2}L^{e^{2}} \end{bmatrix} d\xi = \frac{E^{e}I^{e}}{L^{e^{3}}} \begin{bmatrix} 12 & 6L^{e} & -12 & 6L^{e} \\ 6L^{e} & 4L^{e^{2}} & -6L^{e} & 2L^{e^{2}} \\ -12 & -6L^{e} & 12 & -6L^{e} \\ 6L^{e} & 2L^{e^{2}} & -6L^{e} & 4L^{e^{2}} \end{bmatrix}$$

- The external $W = \sum_{e} \left\{ \int_{\Omega^{e}} q(x)u_{y}^{e}(x)dx + V_{1}^{e}u_{y}^{e}(x_{1}^{e}) + V_{2}^{e}u_{y}^{e}(x_{1}^{e}) + M_{1}^{e}\theta_{y}^{e}(x_{1}^{e}) + M_{2}^{e}u_{y}^{e}(x_{2}^{e}) \right\}$ work is:
- Upon assembly all terms with V and M cancel at each node unless external force and/or moments are applied there.
- We can thus write:

$$W = \sum_{e} \left\{ \int_{\Omega^{e}} q(x) u_{y}^{e}(x) dx + \overline{V} u_{y}^{e}(x) \big|_{\Gamma_{V}^{e}} + \overline{M} \theta_{y}^{e}(x) \big|_{\Gamma_{M}^{e}} \right\}$$

- The boundary Γ_v^e is non-zero only if the element e has at one of its ends a prescribed shear force \overline{v} .
- Similarly, the boundary Γ_M^{e} is non-zero only if the element e has at one of its ends a prescribed moment \overline{M} .
- Note that the sign notation for \overline{v} and \overline{M} is consistent with the sign convention for V_1^e, V_2^e and M_1^e, M_2^e , respectively.

- **Recall that:** $W = \sum_{e} \left\{ \int_{\Omega^{e}} q(x)u_{y}^{e}(x)dx + \overline{V}u_{y}^{e}(x)|_{\Gamma_{V}^{e}} + \overline{M}\theta_{y}^{e}(x)|_{\Gamma_{M}^{e}} \right\}$
- For example, if we only account for prescribed moments and shear force at both ends, the above equation is written explicitly as:

$$W = \sum_{e} \left\{ \int_{\Omega^{e}} q(x) u_{y}^{e}(x) dx \right\} + \overline{V}_{2} u_{2} + \overline{V}_{1} u_{1} + \overline{M}_{2} \theta_{2} + \overline{M}_{1} \theta_{1}$$

 We will keep the general notation here as it will also allow us to account for shear force and moments applied even inside the element!

$$W = \sum_{e} \left\{ \int_{\Omega^{e}} q(x) u_{y}^{e}(x) dx + \overline{V} u_{y}^{e}(x) |_{\Gamma_{V}^{e}} + \overline{M} \theta_{y}^{e}(x) |_{\Gamma_{M}^{e}} \right\}$$

 We will consider these cases in our following derivations – but please note that if you apply a moment or shear force at a point, you will be better served to make that point a finite element node!!

- Recall that: $W = \sum_{e} \left\{ \int_{\Omega^{e}} q(x) u_{y}^{e}(x) dx + \overline{V} u_{y}^{e}(x) |_{\Gamma_{V}^{e}} + \overline{M} \theta_{y}^{e}(x) |_{\Gamma_{M}^{e}} \right\}$
- We assume known distributed load, applied concentrated load and applied concentrated moments. Applying the Hermite interpolation:

$$W^{e} = \{d^{e}\}^{T} \left\{ \int_{\Omega^{e}} q(x) [N^{e}]^{T} dx + [N^{e}]^{T} \overline{V} |_{\Gamma^{e}_{V}} + \frac{d[N^{e}]^{T}}{dx} \overline{M} |_{\Gamma^{e}_{M}} \right\}$$

• Note that in this expression, only the elements *e* that have boundaries (i.e. one of their end points) on the boundaries Γ_v, Γ_M contribute to the last two terms.

$$W^{e} = \{d^{e}\}^{T} \left\{ \int_{\Omega^{e}} q(x) [N^{e}]^{T} dx + [N^{e}]^{T} \overline{V} |_{\Gamma^{e}_{V}} + \frac{d[N^{e}]^{T}}{dx} \overline{M} |_{\Gamma^{e}_{M}} \right\}$$

Also note that with our notation, $[N^e]$ and $[B^e]$ are row vectors and $\{d^e\}$ is a column vector. Assembling (transform from local to global degrees of freedom) then gives:

$$W = \{d\}^{T} \sum_{e} [L^{e}]^{T} \left\{ \int_{\Omega^{e}} q(x) [N^{e}]^{T} dx + [N^{e}]^{T} \overline{V} \Big|_{\Gamma^{e}_{V}} + \frac{d[N^{e}]^{T}}{dx} \overline{M} \Big|_{\Gamma^{e}_{M}} \right\}$$
$$\equiv \{d\}^{T} \sum_{e} [L^{e}]^{T} \left\{ \int_{\Omega^{e}} q(x) [N^{e}]^{T} dx + [N^{e}]^{T} \overline{V} \Big|_{\Gamma^{e}_{V}} + \frac{d[N^{e}]^{T}}{\underbrace{dx}} \overline{M} \Big|_{\Gamma^{e}_{M}} \right\}$$

Minimization of total potential energy

$$\min_{\{d^e\}} \Pi = \min_{\{d\}} \frac{1}{2} \{d\}^T \sum_{e} ([L^e]^T \int_{\Omega^e} [B^e]^T E^e I^e [B^e] dx^e [L^e]) \{d\} - \{d\}^T \sum_{e} [L^e]^T \left\{ \int_{\Omega^e} q(x) [N^e]^T dx + [N^e]^T \overline{V} \Big|_{\Gamma^e_V} + \frac{d[N^e]^T}{dx} \overline{M} \Big|_{\Gamma^e_M} \right\}$$

• This minimization problem results in:

$$\sum_{e} ([L^{e}]^{T} \int_{\Omega^{e}} [B^{e}]^{T} E^{e} I^{e} [B^{e}] dx^{e} [L^{e}]) \{d\} = \sum_{e} [L^{e}]^{T} \left\{ \int_{\Omega^{e}} q(x) [N^{e}]^{T} dx + [N^{e}]^{T} \overline{V}|_{\Gamma^{e}_{V}} + \frac{d[N^{e}]^{T}}{dx} \overline{M}|_{\Gamma^{e}_{M}} \right\}$$

Global stiffness [K]

Global force vector $\{F\}$

Final finite element equations

$$\sum_{e} ([L^{e}]^{T} \int_{\Omega^{e}} [B^{e}]^{T} E^{e} I^{e} [B^{e}] dx^{e} [L^{e}]) \{d\} = \sum_{e} [L^{e}]^{T} \left\{ \int_{\Omega^{e}} q(x) [N^{e}]^{T} dx + [N^{e}]^{T} \overline{V} \big|_{\Gamma^{e}_{V}} + \frac{d[N^{e}]^{T}}{dx} \overline{M} \big|_{\Gamma^{e}_{M}} \right\}$$

- Note that the above minimization process is with respect to the nodal displacements $\{d_F\}$ (i.e. excluding the DOF with prescribed displacement or rotation).
- As was done in earlier lectures, by splitting the stiffness matrix, we finally obtain:

$$[K_F] \{d_F\} = f_{\Omega F} + f_{\Gamma F} - [K_{EF}]^T \{\overline{d}_E\}$$

Distributed
loads
Boundary
Loads (forces, moments)

Uniform distributed load

For uniform over the element load q the first term gives:

Concentrated load inside the element

$$x = x_1 \qquad \qquad F_1 \qquad \qquad f_{\Omega}^e = \int_{\Omega^e} q(x) [N^e]^T dx$$

 Assume a contentrated load at x = x₁. We write this load as a distributed load using a delta function (nice trick!):

$$q(x) = F_1 \delta(x - x_1)$$

• Substitution into the first term of the formula for f_{Ω}^{e} gives:

$$f_{\Omega}^{e} = \int_{\Omega^{e}} F_{1} \delta(x - x_{1}) [N^{e}]^{T} dx \implies f_{\Gamma}^{e} = F_{1} [N^{e}(x_{1})]^{T}$$

If the applied load is at a node e.g. x_{2}^{e} , then:
$$f_{\Gamma}^{e} = \begin{cases} 0 \\ 0 \\ 1 \\ 0 \end{cases} F_{1}$$

Example problem

• The beam ABC is clamped at the left side and simply supported at the right side. Dimensions are in m, forces in N and loading q in N/m . Also, $EI = 10^4$ Nm². At x =12m, $\overline{V} = -20Nt$ and $\overline{M} = 20N.m$. Find the deflection, shear forces and moments.

Finite element discretization

• We consider 2 beam elements as follows:

Stiffness of element 1

$K^{e} = \frac{EI}{L^{3}} \begin{bmatrix} 12 & 6L & -12 & 6L \\ 6L & 4L^{2} & -6L & 2L^{2} \\ -12 & -6L & 12 & -6L \\ 6L & 2L^{2} & -6L & 4L^{2} \end{bmatrix} = 10^{3} \begin{bmatrix} 0.23 & 0.94 & -0.23 & 0.94 \\ 0.94 & 5.00 & -0.94 & 2.50 \\ -0.23 & -0.94 & 0.23 & -0.94 \\ 0.94 & 2.50 & -0.94 & 5.00 \end{bmatrix} \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$

Stiffness of element 2

$3 \quad 4 \quad 5 \quad 6$ $K^{e} = \frac{EI}{L^{3}} \begin{bmatrix} 12 & 6L & -12 & 6L \\ 6L & 4L^{2} & -6L & 2L^{2} \\ -12 & -6L & 12 & -6L \\ 6L & 2L^{2} & -6L & 4L^{2} \end{bmatrix} = 10^{3} \begin{bmatrix} 1.88 & 3.75 & -1.88 & 3.75 \\ 3.75 & 10.00 & -3.75 & 5.00 \\ -1.88 & -3.75 & 1.88 & -3.75 \\ 3.75 & 5.00 & -3.75 & 10.00 \end{bmatrix} \begin{bmatrix} 3 \\ 4 \\ 5 \\ 3.75 \\ 3.75 \\ 5.00 \\ -3.75 \\ 10.00 \end{bmatrix} \begin{bmatrix} 3 \\ 4 \\ 5 \\ 6 \\ 5 \\ 6 \end{bmatrix}$

Global stiffness

$$K = 10^{3} \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 0.23 & 0.94 & -0.23 & 0.94 & 0 & 0 \\ 0.94 & 5.00 & -0.94 & 2.50 & 0 & 0 \\ -0.23 & -0.94 & 2.11 & 2.81 & -1.88 & 3.75 \\ 0.94 & 2.50 & 2.81 & 15.00 & -3.75 & 5.00 \\ 0 & 0 & -1.88 & -3.75 & 1.88 & -3.75 \\ 0 & 0 & 3.75 & 5.00 & -3.75 & 10.00 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \end{bmatrix}$$

Boundary moments and forces

- Element 1 has no boundary with applied V or M.
- Element 2 has $\overline{V} = -20Nt$ and $\overline{M} = 20N.m$ at its right end.

• Assembly of this vector gives:

Distributed load and concentrated load inside the element

Distributed load

• Element 2 has concentrated load P_2 at an end point $\xi = -1$

$$f_{\Omega}^{2} = N^{2^{T}} (\xi = -1)P_{2} = \begin{cases} 5 \\ 0 \\ 0 \\ 0 \\ 0 \end{cases} \begin{cases} 4 \\ 5 \\ 6 \end{cases}$$

Assembled load

• Assembling all load contributions gives:

Solution step

Note that we applied the essential boundary conditions and included the corresponding reaction force and moment at this location

Solution step

2.81 10^{3} -1.883.75 u_{y2} $10^{3} \begin{bmatrix} -0.23 & 0.94 & 0 & 0 \\ -0.94 & 2.50 & 0 & 0 \end{bmatrix} \begin{cases} \theta_{y2} \\ u_{y3} \\ e \end{cases} = \begin{cases} -9 + R_{u1} \\ -15.3 + R_{g1} \end{cases} \Longrightarrow \begin{cases} R_{u1} \\ R_{g1} \end{cases} = \begin{cases} 33N \\ 252N.m \end{cases}$

Displacement field

• For element 1:

$$u_{y}^{1}(x) = \begin{bmatrix} N_{u1}^{1} & N_{\theta 1}^{1} & N_{u2}^{1} & N_{\theta 2}^{1} \end{bmatrix} \begin{cases} 0 \\ 0 \\ u_{y2} \\ \theta_{y2} \end{cases} = N_{u2}^{1} u_{y2} + N_{\theta 2}^{1} \theta_{y2}$$

• For element 2:

$$u_{y}^{2}(x) = \begin{bmatrix} N_{u1}^{2} & N_{\theta1}^{2} & N_{u2}^{2} & N_{\theta2}^{2} \end{bmatrix} \begin{cases} u_{y2} \\ \theta_{y2} \\ u_{y3} \\ \theta_{y3} \end{cases} = N_{u1}^{2} u_{y2} + N_{\theta1}^{2} \theta_{y2} + N_{u2}^{2} u_{y3} + N_{\theta2}^{3} \theta_{y3}$$

Moments and shear forces

1

$$M^{1} = EI \frac{d^{2}u_{y}^{1}}{dx^{2}} = EI[\frac{d^{2}N_{u1}^{1}}{dx^{2}} \quad \frac{d^{2}N_{e1}^{1}}{dx^{2}} \quad \frac{d^{2}N_{u2}^{1}}{dx^{2}} \quad \frac{d^{2}N_{e2}^{1}}{dx^{2}}]\{d^{1}\} = -236.67 + 23.76x$$

$$V^{1} = -EI\frac{d^{3}u_{y}^{1}}{dx^{2}} = -EI[\frac{d^{3}N_{u1}^{1}}{dx^{3}} \quad \frac{d^{3}N_{e1}^{1}}{dx^{3}} \quad \frac{d^{3}N_{u2}^{1}}{dx^{3}} \quad \frac{d^{3}N_{u2}^{1}}{dx^{3}} \quad \frac{d^{3}N_{e2}^{1}}{dx^{3}}]\{d^{1}\} = -23.76$$

$$M^{2} = EI\frac{d^{2}u_{y}^{2}}{dx^{2}} = EI[\frac{d^{2}N_{u1}^{2}}{dx^{2}} \quad \frac{d^{2}N_{e1}^{2}}{dx^{2}} \quad \frac{d^{2}N_{u2}^{2}}{dx^{2}} \quad \frac{d^{2}N_{e2}^{2}}{dx^{2}}]\{d^{2}\} = -222 + 20.25x$$

$$V^{2} = -EI\frac{d^{3}u_{y}^{2}}{dx^{2}} = -EI[\frac{d^{3}N_{u1}^{2}}{dx^{3}} \quad \frac{d^{3}N_{e1}^{2}}{dx^{3}} \quad \frac{d^{3}N_{u2}^{2}}{dx^{3}} \quad \frac{d^{3}N_{e2}^{2}}{dx^{3}}]\{d^{2}\} = -20.25$$

Place nodes on location of concentrated load

To compute an accurate shear force, you need to split element 1 in more elements. For sure place a node at the application of load P_1 .

Results with refined grids: 3 elements

Results with refined grids: 101 elements

