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TIME-INTEGRATION

CONSIDER THE FOLLOWING LINEAR , ORDINARY

DIFFERENTIAL EQUATION SYSTEM :
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TIME- DISCRETIZATION :
¢ TIME STEP SIZE
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At = T, -T, : cAN BE VARIABLE
GIVEN: dvn 5 HOwW DO wE CALCULATE g!‘H‘l

THERE ARE MANY WAYS. WE DESCRIBE 3 oF THEM...
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IN 7)) IF WE APPROXIMATE M WITH A

DIAGONAL MATRIX THEN

2

TIME-MARCHING
CAN BE DONE WITHOUT SOLVING A

MATRIX SYSTEM,

A POSSIBLE APPROXIMATION TO ™M IS M
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DEFINITION :

EXPLICIT M™METHOD

A TIME-MARCHING METHOD THAT DGES NOT

REQUIRE SOLUTION OF A MATRIX 3JYSTEM .

IMPLICIT METHOD

A TIME- MARCHING METHOD THAT

REQUIRES SOLUTION OF A MATRIX SYSTEM.

NOTE THAT  2) AND 3) ARE [MPLICIT METHODS,

AND, WITH M <— M , /) IS AN EXPLICIT METHOD.
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GENERALIZED TRAPEZOIDAL FamiLY: (ogxg 1)

pr(Erzde ) (G +(98h) = XEnor (=05,
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RE-ARRANGE THE EQUATION TO COLLECT THE UNKNOWN
TERMS ON THE LEFT-HAND-SIDFE :

(M+adeK)d,,, = (M-0=00tK)d, + Ot E,

[ ~— v e
NEEDS To BE THESE MATRICES
FORM ED AND DO NOT NEED
FACTORIZED TO0 RE FORMED,
IF X > O BECAUSE

Ne/ e

{ Md, = A (D)

IMPLICIT METHOD ~ e=! 4

Nel

‘:s én = 5 (,_/SV)n

IF At 1S SMALL ENOUGH | THEN THERE CoOULD BE A

JUSTIFICATION TO APPROXIMATE (f:H—dAfE) by M, .

THEN} THERE (S NO MATRIX FoRMATION OR FACTORIZATION,

—3 EXPUCIT METHOD =  ECONOMICAL

STABILITY : CONDITION A L

( wiLL converee 1F At <(Af)cz;ﬂcm_>

ACCURACY : 1 ST-ORDER

(1F you HALVE AT, THeE €RROR WiLL
B HALVED )

NOTE :
(/N A 2ND-ORDER METHeD :  HALVE AT — ERROR HALVEI)
TWICE




PROPERTIES

OF THE GENERALIZED TRAPEZQIDAL FAMILY

X = O | \/2.
NAME OF FORWARD DIFF BACKWARD DIFF CeEnTeAL DIEF
METHOD FoRwARD EULER B ACKWARD tulte TRAPEZOIDAL RULE
COST OfF
MATRIX
ForRMATION & NO YES YES
FACTORIZATION
IMPLICIT Ok EXPLICIT MPLIUT \MPLICIT
ExPLICIT
STABILITY CONDITIONAL UNCONDITIONAL | UNCONDITIONAL
ACCURACY { ST ORDER 1ST oRDER 2 ND ORDER




PREDICTOR / MULTI-CORRECTOR METHOD

\/—UNKNOWN
(qu-cxmfg) dn-u = (M—(I-«)Atg)gn +Atfn+o(
-
(o) (o)
fdm—: * Aénu

J\ UNKNOWN  INCREMENT

INITIAL GUESS

( PREDICTION) (corrECTION)
(o) “— ZEROTH
QTART WITH AN INITIAL GUESS grﬂ_{ ITERATION
(¢) (¢
GIVEN : o FIND: Ad /
~ Nt ~n+l
FROM:
Cl(t') J
(rd+xdtK) Ad, = (M-(-xotK)d, +4at F
_- (0)
T (M+antk)d
w —~— .

T
CALCULATE THE WHEN THIS RESfIDUAL

CORRECTION AND BECoMES SUFFICIENTLY

UPDATE : CLos€ TO ZERO,

OUR. ITERATIONS
ARE ASSUMED TO

((+1) ({)
d HAYE CONVERGED

= d g

~ N+ ~ N+l ~ ntl




REMARKS :

I, IF

1T

(M +xQtK) 15 LEFT AS IT IS, THEN

TAKES ONLY ONE ITERATION TO CONVERSE,

2. we caN AppruxiMaTe  ( M+ x At K) ANnyway

WE  WITH | PROVIDED THAT THE |TERATIONS C(CONVERGE,

3.

3.

THE OBJECTIVE (5 TO APpeoxinNaTE (M +altK)

WITH SOMETHINGE SUFFICENTLY SIMPLE | S5uUT

NOT TOo0 JSIMPLE TO CONVERGE WITHIN REASONABLE

NUMBER OF ITERATIONS,
EXAMPLE : (1::1+0(A€ 1<) < ML

e LiMIT oN AT

- CONVERGES JdLowlLY

exartpLEs:  (M+ ALK ) < (M +x 0t Diac (K))

(K tobEK) <——J>|A<s(/;g+o<[,vci<)




SOLUTION TECHNIQUES FoR NONLINEAR EQUATIONS

CONSIDER THE FOLLOWING SYSTEM OF NONLINEAR
QRDINARY DIFFERENTIAL EQUATIONS IN TIME .

MU+ N(U) +RY =F

y(o) = U,

THIS CAN RE DISCBETIZED AS FolLLOWS :

( Une Un) N(cx et (1) U, )

TV

]\ (NoNuN(—TAR VECTOR PUNC_T(OI\T)

(LineaR TE‘R“;‘E“""’;’—_—‘/

THIS MEANS THAT IN NONULINEAR PROBLEMS,
INSTEAD OF A LINEAR EQUATION SYSTEM

(N"‘O(A{:IS)QR-I-[ = e e

WE NEED TO 3SOLVE AT EVERY TIME STEP

A NovLineRR  gquaTioN systed  N(d,, ) = --...

la "I Wad

FOR NOTATIONAL CONVENIENCE | DRoP THE SUBSCRIP N+
AND cALL THE R.H.S. F. THEN,

N(d)

IS WHAT NEEDS To BE SOLVED AT EVERY TIME STEP,




NEWTON-RAPHSON METHOD
IN SOLVING
NCS{) = E D

C UNKNOWN

o <— ZEROTH |[TERATION
START WITH AN INITIAL GUESS CI P

{
AND AT EACH ITERATION, GIVEN d° | CALCULATE

¢
A CORRECTION AE‘ , SUuCH THAT
¢ ;
N(d+ad )z F

t
To carcucaTe Ad | CONSIDER THE FOLLOWING TRUNCATED

TAYLOR SER]ES EXPANISION AROUND ’CJL:
' - ~ L
N(d+od") = N(JY) + 224/ CAd .

~

THEN SOLVE
=] adt - FondY,

ot

5d

\ u 1"
K_(d"') : ~TANGENT STIFFNESS MATRIX

f\»T ~

AND UPDATE

d _ 4ty Ad

™




NEWTON -~ RAPHSON METHOD CONVERGES QUADRATICALLY)

PROVIDED THAT

o]
1) THE INiTIAL euUESS d T is  suFFICIENTLY

L

CcLOSE TO THE SOLUT(ON) AN D

anN
2) INVERSE OF ==  EXISTS.
2d
How Do WE DECIDE WHEN TO 35T0P (TERATIONS 7
ANSWER :  WHEN

a) F-N(d') 5 suericienTLY CLosE TO O, OR

~

b) A PREDETERMINED NUMBER OF ITERATIONS
HAVE BEEN PERFORIM™MED.
(
IN BOTH CASES, THE Resipval  F-N(d") neeDp

TO BE MON[TORED . THE RESIDUAL AT |[TERATION L:

R" = F-N(d).

CHECK TO SEE IF

R°)l < & <— A PREDETERMINED, SMALL VALUE

EXAMPLE for THE poemt  [[-f -

x| = (x*+xFt..+ x,) 2

.
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TO CHECK CONVERGENCE IN A WAY THAT MAKES SeNSE,
¢

we Need To  Scare  [IR]l. oNe waAaY 5 71O
Scate T with | R7] .
L [NITIAL RESIDUAL

THEREFoRE, THE C(ONUERGENCE CHRK TAKES

THE  FORM

P

IRl -
o
IRl
QuITE OPTG‘N) IT IS HoRE pEAQTlCAL_} ESPECIALLY

IN SolLVING TIME-DEPENVDENT PRCBLEMS , To PERFoOBRMN
A PREDETERMINED NUMBER OF ITERATIONS AT EACH
TIME STE?/ BuT AT THE SAME TIME KEEP AN

EYe ON

[l Rl

Y

| &l

TO MAKE Sye€ THAT 1T DOES NOT EXCEED A

CERTAIN LEVEL,




MODIFIED NEWTON-RAPHS50N METHOD

K(d) ad' = F -n(dY)
L__V____J

? IN THE "FULL' NEWTON-RAPHSON METHOD
THIS GETS UPDATED AT EVERY ITERATION
8Y ,'L\(T (Sll) = _9_/;/_/ .

ad Iyt

IN THE MODIFIED NEWTON-RAPHSON METHOD

§T Is NOT UPDATED EVERY ITERATION

AT SoME OF THE |[TERATIONS , OLD VALUES

oF K, ARE USED.

THIS APPROACH

* CUTS COST QF COMPUTATION

« BUT MAY REDUCE THE CONVERGENCE RATE,




INCREMENTAL NEWTON-RAPHSON METHOD

THE NEWTON —RAPHSON METHOD MAY HAVE CONVERGENCE

[e]
DIEFICULTIES (F THE (MITIAL 6UESS d° 15 Too "pag

—~

FROM THE SOLUTION,

1 . u 1
ONE APPROACH :  [NCREMANTAL “LOADING (/.e. LOAD RAMPING )
N(d) = £
1) T staeT with A FRACTION oF

THIS. THIS MEANS A "LoAD"
SMALLER THAN THE ACTUAL ONE.

9.) GET A CONVERGED SOLUTION FoP THIS LOAD LEVEL

3) USE THAT SOLUTION AS THE [NITIAL GUESS Fol
THE NEXT LEVEL.

4) RePAT  2) AND 3) UNTIL THE FULL LOAD
LEVEL IS REACHED.

GET
EXAMPLE : START WITH —F —>
/O ~ <~ Yo
GET
UsE d:/ AS INITIAL GuEss Fop = F —>d,
- CET
vse 9(2.//0 # /7" “ /" % r — éj/o

: cer
Use éﬁ//o " y o Y E —> /C\I,




RAMPING UP THE REYNOLDS NUMBER

IN FLUID DYNAMICS PROBLEMS | TYPICALLY/ THE NONUNEAEL
TERMS ARE PROPORTIONAL TO THE ReYNOLDS NUMBER.

ONE CAN START WITH A FRACTION QF THE ACTUAL

REYNOLDS NUMBER J

2) GET A (ONVERGED SOLUTION FoB THAT REYNOLDS WNUMBER
3) USE THAT SOLUTIOM AS THE IMITIAL GUESS FOR

THE NEXT LEVEL oF THE REYNOLDS NUMRER
4) REPEAT 1) AND 3) UNTIL THE FULL REYNOLDS

ARJUMBER IS REACHED,

-5 66T Cl
EXAMPLE : START WiTH RexI0  —> & -5
-4 &€T
us€ ij,o-s AS INITIAL GUESS Ffok Re x/0 — C}\(x/o-‘%
-3 €T
use S_lx{o-‘l “ 7 4 7 Re xi0 — Sl,(lc;3
o Ga—
USE gxlo—, " " 7] ’: Re ___9 g

NOTE © IND A TIME-DEPENVDENT PROBLEM |, RAMPING THE
REYNOLDS NUMBER NEED§STO RE EXERCISED
ONLY IN THE INITIAL STAGES OF THE
TIME- MARCHIN &G,




ITERATIVE <SOLUTION TECQNIQUES FOR
LINEAR EQUATION SYSTEMS

AX =50

WHERE DO THESE SYSTEMS comME FEOM ©
EXAMPLE

NONLINEAR gT<Q/£)A§L: E“N(S“
PROBLEMSE

"t/

(0)
LINEAR (/\,QI+O(A£5) Ad
PROBLEMS}'

il

N MOST CASES, ESPEIALLY THosE IN 3D,

THE MATRIX A IS ToO LARGE , AND THEREFORE
WE (CANNOT USE A HDIRECT”SOLUTION METHOD
SUCH AS THE GAUSSIAN ELIMINATION METHOD OR
OTHER. FACTOR|ZATIUN TECAMIQUES., BETASE WE
CANNOT AFFORD 1O

Q) FaCToeizE A

b) sTorE THE FACTORIZED A .




IN ITERATIVE  SOLUTION OF

é X = Q ’
UNKNOW N
START WITH AN INITIAL GUESS X
€ ~ O «— ZEROTH ITERATION
AND AT EACH ITERATION GIVEN Xm , CALCULATE
A correCTiON AX . SUCH THAT

é,‘(i(,m’ngm) = é

OR

é A?Sm = ,l?,— ’,AQ ->5m
AND UPDATE

Xme = Xt A>_<m .

IE WE LEAVE ,i\ AS IT IS, THIS PROCEDURE IS5
ESSENTIALLY NO DIFFERENT THAN  SOLVING f\_}_c:é)
AND |T CONVERGES |MN ONE [TERATION TO THE
SoLuTion oF  AX=b. Foe EXAMPLE  1F WE

START wiTH X, = O, Tven  AX = X . BUT....

o} ~




IN MOST CASES

A

o~

A

y WE CANNOT AFFORD LEAVING
AS IT IS. THEREFORE WE APPROXIMATE

WITH A ' PRECONDITIONING ' MATRIX P

, AND

SOLVE AT EVERY ITERATION

AND

NPAym: é"i\?ﬁ

m

UPDATE xm 8Y USING AN UPDATE

MerHoD MORE  SOPHISTICATED THAN  SIMPLY

ADDING Aym © ,>Sm .

THERE ARE 3 MAIN

')

2)

3)

ISSUES HERE.

How To compPure  b-A X, IN THE

MOST EFFICIENT WAY.

How TO (DESI6eN P IN A WAY THAT KEEPS IT

SimMmpLE WITHOUT  SLOWING THE CONVERGENCE Too MUCH,

How TO UPDATE X . /N A WAY THAT (5

EcovomicAal RBUT ALSO HELPS (ONVERGBMCE




[) How To compUTE  b-AX,,

a) SPARSE-MATRIX- BASED :

STORE A BY USING A SPARSE-MATRIX 3TORAGE TECHNIQUE,
AND PERFoRrH THE COMPUTATION WITH GLOBAL
MATRIX-\JECTOR PRODUCTS.

b) ELEMENT-MATRIX-BASED :

Nel e
NOTE THAT: AX = ( A ) X
S
BUT WE DO NOT NEED THIS
BECAUSE
nel \,—— ELEMENT MATRIY
= A\ ( )
e=1

t—-— ELEMENT VECTOR

C) ELEMENT- VECTOR —BASED :

A X N

— =~ X = Ilim N(Q’+€2_{m)—’/}1(g{)
~ E
nel n ‘
e e e
= A N(I+eEXy) - AN ()
A Xm ::,- e=! e=1
a E
WHeRE E IS A SMALL NUMBER,




2) How To DEsiGN P
P = DiAG(A) IS THE SIMPLEST CHOICE.

Z\— DIAGoNAL OR NODAL-BLOCK-DIAGON AL

CONVERGES SLOWLY |, ESPECIALLY FoR
INCOMPRESSIBLE cLOWS .

OTHER POSSIRILITIES : CLUSTERED E(EMENT-BY-ELEMENT
PRECONDITIONING

. MIXED PRECONDITIONING

3) HOW To UPDATE X,

AS A WAY JUST ONE STEP MORE SOPHISTICATED
THAN SIMPLY ADDING Ay, to X,

J

WE UPDATE )\( BY USING THE FEXPRESS|ON

m

2.<m+1 = )Sm L Agm
14
C A SCALAR ' SEARCH
PARAMETER
1 noon
WE DETERMINE THE ' BEST S BY HINIMIZING
THE UPDATED RESIDVAL I, = b-AX,
WITH RESPECT TO S . Lm
Mﬁ
Cmun= b-A(Xm+sldy,) = b-Ax,-sAdly,




L m+ = L m - 3 é A}jm
MINIMIZE KNOWN KNOW N

THISL%
WITH RESPECT TO THIS

Minemize (el wit respeeT To ‘s

2
Mivimize ] Coanll wiTe RESPECT TO S . &=

d “ d
= /J rm-\\—I” = O o ’&—S' ([m+1 ./Cm-{-,) = O

>  (Lm-SAAyY,)-(AbdY,)=0

QﬁAﬁm) '< &Agm)

OoR
Lm * <’i\ Agm)

/| Aay, |*

—
—

THERE ARE MANY OTHEEWAYS) JNCLUDING METHO®ODS
u
WITH MULTIPLE "SE7-\RCH pPpARAMETERS AND D)IRECTIONS,






