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1.4 THE GENERAL LINEAR MODEL

Experimental data can often be modeled by the general linear model (also
called the multiple regression model). Suppose that the response y is related
to p covariates (also called explanatory variables, regressors, predictors)
Xg5%2,...5 X, as follows:
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where € is the random part of the model which is assumed to be normally .

2 -

st e - - 2 " -
distributed with mean 0 and variance o -, i.e., €e~N(0, o?); because € is

' normally distributed, so is y and Var}(y) =a'f The Vstructural part of the

model is 7
T = Bo + ﬂlxl + - +Bpxp.

—.Here, E(y)is linear in the B’s, the regression coefficients, which explains the

term linear model. ‘
~“If "N observations are collected in an experiment, the model for them

~ squared residuals, the vector of residunals
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r=y-Xg am
needs to be perpendicular to the vector of fitted values
5‘, = Xé, [ e - (1.8) S

that is, the cross product between these two vectors should be Zero:

r’y=rTXp =0.

" takes the form

N, (1.2)

x;, are the correspond-

Vi=Bo+Bixuyt - +Bx, v,  i=1,.

where y; is the ith value of the response and x;4,...,

ing values of the p covariates. - .
These N equations can be written in matrix notation as:

(13)

wherey = (y;,..., yi)' is the N X 1 vector of responses, B = ( 8;, B, . 3,,)T
is the (p+1) X1 vector of regression coefficients, € = (e],.:., fN) is the
N % 1 vector of errors, and X, the N X (p + 1) model matrix, is given as

y=XB +e¢,

1 xll oee x]p

X = (1.4)

1 xpy XNp

‘An equivalent way of stating this is that the columns of the model matrix X
need to be perpendicular to'r, the vector of residuals, and thus satisfy

XT(y—-Xp)=XTy - XTX@ = 0. (1.9)
The solution to this equation is the least squares estimate which is
B = (XTX) " 'XTy. (1.10)

In fitting the model, one wants to know if any of the variables (regressors,
predictors, covariates) has explanatory power. None of them has explanatory
power if the null hypothesis

Hy:py=-=8,=0 (1.11)
holds. In order to test this null hypothesis, one fieeds to assess how much of
the total variation in the response data can be explained by the model
relative to the remaining variation after fitting the model, which is contained
in the residuals.

The unknown parameters in the model are the regression coefficients B
and the error variance o 2. Thus, the purpose for collecting the data is to
estimate and make inferences about these parameters. For estimating {, the
least squares criterion is used; i.e., the least squares estimators (LSEs),

denoted by ﬁ, minimize the following quantity:

N
h (yi —(By+ Byxy + - +Bp'xip))2 (1.5)
i=1
which in matrix notation is .
(y - XB)" (y - XB). (1.6)

In other words. the saquared distance between the response vector v and the

‘Recall how the model was fitted: the residuals are perpendicular to the
fitted values so that we have a right triangle. This brings to mind the
Pythagorean theorem: the squared length of the hypotenuse is equal to the
sum of the squared lengths of its opposite sides. In vector notation, the
squared distance of a vector a is simply a’a = Ta2. Thus, from the least
squares fit, we obtain

y'y=(XB)'(xB) + (+~ XB)"(y - xB)
=B"X"XB + (y-XB)  (y- ),

where y’y is the total sum of squares (uncorrected), BTXTXp is the regression
sum of squares (uncorrected), and
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Table 1.1 ANOVA Table for General Linear Model

Sum of : Mean
_Squares ' Squares

BTX"XB - N3 /p

Source

Degreesof - . - ..
Freedom

regression  p BTXTXB — Ny2

residual . N-p-1_ (y=XB)7G=XB)__ (=X Gg—-XB)/N—-p—1)
total N-1 yTy — N§?
(corrected)

(1.11), the contribution from estimating the intercept B, needs to be re-
moved. Subtracting off its contribution N2, where y is the average of the N
observations, yields

CTSS =yTy — N5* = RegrSS + RSS -

A A - A T : A
=(B"XTXB - Ny?) + (y— XB) (v—XB), (1.12)
where CTSS is called the corrected total sum of squarés and is equal to
¥, (y; —¥)?, which measures the variation in the data, and RegrSS is called
the corrected regression sum of squares. In the remainder of this book,

be implied. Thus, the variation in the data is split into the variation explained
by the regression model plus the residual variation. This relationship is given
in a table called the ANalysis Of VAriance or ANOVA table displayed in
Table 1.1.

Based on (1. 12) we can defme

JRE— lS iﬂri‘é“}ésgéziizl?(—of;érro})—sum—of—squaresﬂnﬂarder*to—test—the—nul—lﬂhypothesis—' o

“corrected” will be dropped in reference to various sums of squares but will

RegrSS RSS .

2= =1- .
CTSS CTSS

(1.13)

Because the R? value measures the “proportion of total variation explained
by the fitted regression model Xf3,” a higher R? value indicates a better fit of

\

‘J ’ mean-squared error (MSE) and is an estimate &
|

|

i the regression model. It can be shown that R is the correlation between
‘ y=(yPX, and §=($,)Y, and thus is called the multiple correlation coeffi-
cient.

The degrees of freedom are those associated with each sum of squares.
The mean square is the sum of squares divided by the corresponding degrees
of freedom. The residual mean square is commonly referred to as the

52 for o2, ie.,

- . A.T. A
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1f the null hypothesis (1.11) holds, the F statistic

(BTXTXB-N¥?)/p

— " (1.15)
(y-XB) y-XB)/(N-p-1)

(the regressmn mean square divided by the remdual mean square) has an F
distribution with parameters p and N —p—1, which are the degrees of

freedom of its numerator and denominator, respectively. The p value is . .. __
calculated by evaluating

Prob(F, y_p-1 >F,.), (1.16)

where Prob(-) denotes the probability of an event, Fp N-p-1 has an F
distribution with parameters p and N—p—1, and F, bs is the observed value
of the F statistic. The F critical values can be found in Appendix D. The p
value in (1.16) can be obtained from certain pocket calculators or by interpo-
lating the values given in Appendix D. An example of an F distribution is
given in Figure 1.4 along with its critical values.

Note that the p value gives the probability under the null hypothesis that
the F statistic value for an experiment conducted in comparable conditions
will exceed the observed value F,, . The smaller the p value, the stronger is
the evidence that the null hypothesis does not hold. Therefore it provides a
quantitative measure of the significance of effects in the éxperiment under
study. The same interpretation can be applied when other test statistics and
null hypotheses are considered.

It can be shown that the least squares estimate B has a multivariate
normal distribution with mean vector B and variance-covariance matrix

0.1% point

L,
6 .8 10
observed F-value 4.2

Figure 1.4. Observed F Value of 4.20 in Relation to an F Distribution With 3 and 16

5% point 1% point
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20T \=1 ¢ e e e e m—— e -

oA AL LG,
B ~MN(B,02(X7X)"), (1.17)

where MN stands for multivariate normal. The (i, j)th entry of the variance-

covariance matrix.is. Cou( B, B}) and-the jth diagonal element is Cou( ﬂ /3,)

= Var( ,B ). Therefore, the distribution for the individual B 1s
N( B}, 2(XTX) 1), which suggests that for testing the null hypothesis

Hy: B;=0, (1.18)
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and’

Model II: y; = By + Byxy + - + By Xy + ByraXi gu1 T 70 T By%;p

(1 24)

Model I € Model II since B,y =
testing the null hypothesis that Model I is adequate ie.,

Hy: By = =B,=0 (1.25)

holds; the extra-sum of squares-principle-employs-the- F statistic:

the following ¢ statistic be used:
B;
A2 Ty "L
V&i(XX)j;

Under H, it has a ¢ distribution with N—p—1 degrees of freedom. This
can also be used to construct confidence intervals since the denominator of
the ¢ statistic 1s the standard error of its numerator B,

ﬁjitN—p—l,a/z V &Z(XTX)J';’ ;

where ty_,_; ,,, is the upper a/2 quantile of the ¢ distribution with
N —p — 1 degrees of freedom. See Appendix C for ¢ critical values.

Besides testing the individual B;’s, testing linear combinations of the Bj’s
can be useful. For testing a’p = ZFOa Bj, where ais a (p + 1) X 1 vector, it
can be shown that

(1.19)

(1.20)

a”B ~ N(a™B, 0 ?a” (X7X) 'a). (1.21)

This suggests using the test statistic
a’f
Vé2aT(X7X) a

(1.22)

which has a ¢ distribution with N —p — 1 degrees of freedom.

Extra Sum of Squares Principle

The extra sum of squares principle will be useful later for developing test
statistics in a number of situations. Suppose that there are two models, say
Model I and Model II. Model I is a special case- of Model II, denoted by
Model I < Model II. Let ’

( RSS(Model I) — RSS(Model IT)) /( p — q)

RSS(Model II) /(N —p — 1) , (1.26)

where RSS stands for the residual sum of squares. It follows that

RSS(Model I) — RSS(Model II)
= RegrSS(Model IT) — RegrSS(Model I), (1.27)

where RegrSS denotes the regression sum of squares; thus, the numerator of
the F statistic in (1.26) is the gain in the regression sum of squares for fitting
the more general Model II relative to Model [, i.e., the extra sum of squares.
When (1.25) holds, the F statistic has an F distribution with parameters
p — q (the difference in the number of estimated parameters between Models
I and II) and N—p—1. The extra sum of squares technique can be
implemented by fitting Models I and II separately, obtaining their respective

. residual_sums_of . squmes,_calculat1ngthe F statistic above, and then comput-

ing its p value.

1.5 VARIABLE SELECTION IN REGRESSION ANALYSIS

(The material in this section will not be used until Chapter 5.)

In the regression fitting of the linear model (1.2), those covariates whose
regression coefficients are not significant may be-removed from the full
model. A more parsimonious model (i.e., one with fewer covariates) is
preferred as long as it can explain the data well. It is also known that a model
that fits the data too well may give poor predictions. The goal of variable
selection ' in regression analysis is to identify the smallest subset of the
covariates that explains the data well; one hopes to capture the true model or
at least the covariates of the true model with the largest regression coeffi-

=B, =0-in-Model L. Then, for-
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to a model) with the best value of the criterion. This is referred to as best

subset regression. To miaintain a balance between data fitting and prediction,

a good model selection criterion should reward good model fitting as well as
penalize model complexity. The R? in (1.13) is not a suitable criterion
because it increases as the number of covariates increases. That is, it does
not penalize excessively large models.

A commonly used criterion is the C, statistic (Mallows, 1973). Suppose
there are a total of g covariates. For a model that contains P regression
coefficients corresponding to p —1 covariates and an intercept term By,
~ define its C, value as

PCC

r’ C '“ S e e

PAYe V)

P

where RSS is the residual sum of squares for the model, s2 is the mean-
squared error (see (1.14)) for the model containing all g covariates and Bos
and N is the total number of observations. As the model gets more compli-
cated, the RSS term in (1.28) decreases while the p value in the second term
increases. The counteracting effect of these two terms prevents the selection
of extremely large or small models. If the model is true, E(RSS) = (N — plo?.
Assuming that E(s?) = ¢2, it is then approximately true that

N — 0.2 gi,
)= R (v-2p) .

E(C,

Thus one should expect the best fitting models to be those with C,=p.

Further theoretical and empirical studies suggest that models whose C,
values are low and are close to p should be chosen. .

For moderate to large g, fitting all subsets is computationally infeasible.

C,=—— (N=2p),  (128)

An alternative strategy is based on adding or dropping one covariate at a
time from a given model, which requires fewer model fittings but can still
identify good fitting models. It need not identify the best fitting models as in
any optimization that optimizes sequentially (and locally) rather than glob-
ally. The main idea is to compare the current model with a new model
obtained by adding or deleting a covariate from the current model. Call the
smaller and bigger models Model I and Model 11, respectively. Based on the
extra sum of squares principle in Section 1.4, one can compute the F statistic
in (1.26), also known as a partial F, to determine if the covariate should be
added or deleted. The partial F statistic takes the form '

RSS(Model I) — RSS(Model II)
RSS(Model I1) /v ’

(1.29)'
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One version is known as backward elimination. It starts with the full
model containing all g covariates and computes partial F’s for a]l models-
with g — 1 covariates. At the kth step, Model II has g — k + 1 covariates and
Model I has g — k covariates, so that v=N—(g=k+ 1’)'.="11‘N“—*q*+"k —2
in the partial F in (1.29). At each step, compute the‘parnal F value f01: each
covariate being considered for removal. The one with the lowest partial F,

rovided it is smaller than a preselected value, is dro*ppedr‘The*proce'dur.e“~ :
continues until no more covariates can be dropped. The preselecte:d \faluc? is
often chosen to be F; , ,, the upper « critical value of the F dlst‘nbutlon
with 1 and v degrees of freedom. Choice of the « level determines the
stringency level for eliminating covariates. Typical a’s range fr'om a=01 t?
0.2. A conservative approactrwould-be tochoose-a smaller F (i.e;a largef a)
value so that important covariates are not eliminated. Note that .t}'1e statistic
in (1.29) does not have a proper F distribution so that the F critical values
serve only as guidelines. The literature often refers to them as F-fo-remove
values to make this distinction.

Another version is known as forward selection, which starts with the model
containing an intercept and then adds one covariate at a time. The .covar.iat.e
with the largest partial F [as computed by (1.29)] is added, provided it is
larger than a preselected F critical value, which is referred to as an
F-to-enter value. The forward selection procedure is not recommended as it
often misses important covariates. It is combined with backward elimination
to form the following stepwise selection procedure. ‘

The stepwise selection procedure starts with two steps of the forward
selection and then alternates between one step of backward elimination and
one step of forward selection. The F-to-remove and F-to-enter values should
be chosen to be the same. A typical choice is F; , , with a=0.05, 0.1,0.15.
The choice varies from data to data and can be changed as experience
dictates. Among the three selection procedures, stepwise selection is known
to be-the-most-effective-and-is-therefore-réecommended-for general use.

For a comprehensive discussion on variable selection, see Draper and
Smith (1998).

1.6 ONE-WAY LAYOUT

Consider the following experiment, reported by Sheldon (1960), which was
performed at a pulp mill. Plant performance is based on pulp brightness ‘as
measured by a reflectance meter. Each of the four shift operators (denoted
by A, B, C, and D) made five pulp handsheets from unbleached pulp.
Reflectance was read for each of the handsheets using a brightness tester, as
reported in Table 1.2. A goal of the experiment is to determine whether
there are differences between the operators in making the handsheets and

reading their brightness.
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Table 1.2 Reflectance Data, Pulp Experiment

s Operator
A B C D
59.8 59.8 60.7 -~ 610
60.0 . 602 60.7 60.8
608 604 605 _ 606 .. . . _ .
60.8 59.9 60.9 60.5
59.8 60.0 60.3 60.5
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corresponding model matrix X is the 20 X 5 matrix

-

treatment is a factor level combination applied to the experimental units.
Since there is a single factor, the &k treatments correspond to the k levels of
the factor. Replication is used here with »; observations taken for treatment
i. For the pulp experiment, k=4, n,=n,=n;=n,=35, and N=20.

Although Sheldon (1960) did not provide further details, randomization
could have been applied in several ways in this experiment. First, 20 contain-
ers holding enough pulp to make a handsheet could have been set up and the
20 containers. randomly distributed among the four shift operators. For
randomization, there are

20 _ - 20! - 9
(5555) = 3151 - 17X 10

different allocations of the units and one such allocation can be randomly
_chosen by taking a random permutation of the numbers 1-20, then assigning

~ the first' five-numbers—to -operator—#; -and—so—on.~Second; the—order—of —

brightness measurements for the 20 handsheets could have been randomized.
The linear model for the one-way layout is

Yo=ntnte, i=l..,k j=1..,n, (1.30)

where y;; is the jth observation with treatment i, 7; is the ith treatment
effect, the errors ¢;; are independent N(O, o 2) with mean 0 and variance o2,
k is the number .of treatments, and »; is the number of observations with
treatment i. . _

In terms of the general linear model (1.3), for the pulp experiment
B =(n, 1y, 75, 75, 7,)7, y is the column vector (59.8, 59.8, 60.7, 61.0, 60.0, 60.2,
60.7, 60.8. 60.8. 60.4. 60.5. 60.6. 60.8. 59.9. 60.9. 60:5. 59.8. 61.0. £0.3. &N 5)T-

fU N U QG U T S P SN NN
ouooo»—sooo»—yo!oo»aooo»—aoo
O OO OOOROOOHOOORO OO

OCOoOOHROOOHOOOROOOHOOOM
OCOHOOOROOOHROOOROOOR O

Ve

The ANOVA table for the general linear model in Table 1.1 can be shown
to reduce to Table 1.3 for the one-way layout, where N=X¢_,n,, p=k—1,
and y.. denotes the average of all N observations. Generally, the dot
subscript indicates the summation over the particular index, e.g., ¥;. is the
mean of observations for the ith treatment (i.e., averaged over the second
index, j=1,...,n).

‘Instead of using the matrix algebra of Section 1.4, the ANOVA for the
one-way layout can be derived directly as follows. Using the decomposition

yy=n+5+r;

=j.+ (yf.—y..) + (¥ =5:.)s (1.32)

Table 1.3 ANOVA Table for One-Way Layout

Degrees of Sum of
Source Freedom Squares
treatment k-1 Tk n(F.~5.)?

residual ) N - k E{F.l Z}’Ll(y,-j - }_’,' .)2
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where Table 1.4 ANOVA Table, Pulp Experiment
o Y . _ - Degreesof - ... Sum of Mean B
§=3.s T =507 Y. 15 = Y5 = Vi (1.33) Source Freedom Squares - Squares F
then using operator 3 1.34 0.447 420
= - = . residual 16 1.70 0.106 :
Y= 3= (¥ ) Dy =F)s (1.34) otal 19 3.04 S
and squaring both sides and summing over i and j yield .
" k on Because there are four operators, k=4 and the degrees of freedom for the
¥ (y;-7. ) = Z n(3.~ 5. ) + E Z ( Vij = ¥ )2_ (1.35) treatment sum of squares is 3 (= 4 — 1). Its mean square is then
ij i i
T=1)=1 T=T fl el B - e e e s 1 34 0 447
For each i, 3 -
n; . - .
- - . - ' Both 1.34 and 0.447 are given in the “operator” row of the ANOVA table in
(7:=3.) X (35 =3:) =0, (1.36) Table 1.4. Similarly, the residual sum of squares is

J=1

so that these cross-product terms do not appear in (1.35). The corrected total
sum of squares on the left equals the treatment sum of squares plus the
residual sum of squares. These three terms are given in the ANOVA table in
Table 1.3. The treatment sum of squares is also called the between-treatment
sum of squares and the residual sum of squares the within-treatment sum of
squares.

Thus, the F statistic for the null hypothesis that there is no difference
between the treatments, i.e.,

(59.8 — 60.24)% + (60 — 60.24) + -+ +(60.5 — 60.68)* = 1.70,

which has 16 (=N — k = 20 — 4) degrees of freedom. Then the mean-squared
error is

52217 0106,
T

Both 1.70 and 0.106 are glven in the “residual” row of the ANOVA table in
Table 1.4. The F statistic in (1.38) has the value .

0.447
=420,

Hy:ri= - =17, (1.37)
is
Tk (5.-5.) (k-1
- lnt(yz- y-) {( ) , (138)
i L PL1( vy ~5.)/(N—k) :
which has an F distribution with parameters K ~1 and N —k.
For the pulp experiment,
V.= 60.24, y,.=60.06, y;.=60.62, y,.=60.68, y.=60.40,
ny=n,=ng=n,=>5.

Therefore the treatment (i.e., operator) sum of squares in Table 1.3 is

5(60.24 — 60.40)” + 5(60.06 — 60.40)*

0.106

which is given in Table 1.4 under the column F. Under the null hypothesis
H,, the F statistic has an F distribution with 3 and 16 degrees of freedom.
The area under the curve (in Figure 1.4) to the right of the observed F value
of 4.20 is the p value

Prob(F; 15> 4.20) = 0.02.

Recalling the interpretation of p values glven after (1.16), the small value of
0.02 provides some evidence that there is an operator-to-operator difference.
Another way to interpret the value 0.02 is that for the pulp experiment the F
test rejects the null hypothesis H, at the 0.02 level.

Once H, is rejected, an immediate question is: what pairs of treatments
are different? This question will be addressed by the method of multiple
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Seo-far-we-have not-considered the _estimation of the treatment effects 7; in

VO LA

“(1730). Because—there are k types of observations but k+1 regression
parameters in (1.30), the model (1.30) is_over-parameterized. If one attempts
to fit the model, ie., to calculate the least squares estimate B in (1.10), the
matrix (X7X)~! based on (1.31) does not exist. The matrix X is not of full
rank since-the-sum of columns 2=5 equals column _1; that is, the five columns
are not linearly independent so that X7 X is singular. In order to make X”X a
nonsingular matrix, one constraint needs to be put on the parameters. Two
" types-of constraints will be considered in the remaining part of the section.

" Constraint on the Parameters
The more commonly used constraint is
k

> 7=

i=1

(1.39)

which is called the zero-sum constraint. An example is the 7; in (1.33) for the
ANOVA decomposition. It is readily verified that, for n;=n,

k k

Z = E (ii-—y--) =0.
i=1 =1
Given 7, i=1,...,k—1, 1,= =X ]lr. In substituting 7, by Z, Iz in

the model (1. 30) the number of parameters is reduced by 1, ie., B=
- (n,7,73,..+, T4_1)._The remaining parameters have a_different meaning.

For example,

k 1 k
)y E(yij)zz L(ntr)=n+0=m,
=1 i=1

b

Le., n represents the grand mean. Also,
E(yj)—n=n+n—-n=m1,

which is the offset between the expected treatment i response and the average
response. Since treatment kisa hnear combination of the remaining treat-

~n . RS N UL TN T SR PN S P -y

5
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With B =(n, 7y, 73, 73, 7,)7, (1.30) leads to
1 {1 0 0y . (0} __
_ |1 0 1 0 0
XB=n 1 +710 + 7, 0 + 75 1|t 0 (1.40)
1 0 0 0/ .- A1).
for the first four rows of the X matrix. Substituting 7,= —7,— 7, —7; in
(1.40) leads to
1 1 0 0 " 0
_ |1 0 1 0
XB=179 1 + 7 0 + 7, 0 + 75 1 +(=1—7y—75) 0
1 0 0 0 1
1 1 0 0
_]1 0 1 0
=19 1 + 7 0 + 7, 0 + 73 i
1 -1 -1 -1
which leads to the following model matrix X with B = (5, 7, 75, 75)"
1 1 0 0
1 0 1 0
1 0 0 1
1 -1 -1 -1
41 1 0o o
1 0 1 0
1 0 0 1
1 -1 -1 -1
1 1 0 0
_ {1 0 1 0
X 1 0 0 nE (1.41)
1 -1 -1 -1
1 1 0 0
1 0 1 0
1 0 0 1
1 -1 -1 -1
1 1 0 0
1 0 1 0
1 0. 0 1
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For the pulp experiment,

g e ——which amounts-to- dropping-r—from-the-vector-of parameters»Buand -dropping

 B= (R4, %,%5) = (6040, ~0.16, ~0.34,0.22) . (1.42)

Although 8 and B depend on the choice of constraints, X and XB do
not. That is, XB in (1.31) and B =(n, 74,75, 73,7)" is equal to XB for X in
- (1.41) and B =(n, 1y, 75, 5)".

The second type of constraint is

=0, . (1.43)

3{

the corresponding column in the model matrix X. Now XTX)™? exists, so
that the least squares estimate { can be obtained. How should the remaining
parameters be interpreted? It can be shown that n=E(y,)), ie., the ex-
pected response value from treatment 1;

E(yy)) —E(yyj)=n+1,—n=1,, (1.44)

ie., 7, represents the comparison of treatments 1 and 2 in terms of their
expected responses; and the remaining 7 parameters have a similar interpre-
tation, e.g., 7;=E(y;;) — E(yy;). Thus, 7;, i > 2, represent the comparisons
between the first and the rest of the k& treatments. Other treatment compar-
isons can be expressed as linear combinations of the 7, e.g., the comparison
of treatments 2 and 3 is given by 7, — ,, which is a linear combination, a”B,
of B, where a’ =(0, —1,1,0,...,0). Any linear combination a’B of B with
La; =0 is called a contrast.

The constraint in (1.43) is natural when treatment 1 is a standard or
existing treatment and the other k — 1 treatments are new ‘treatments. The
performance of the new treatments is measured by their comparisons with

the standard tréatment. Treatment 1 can also be interpreted as the baseline
for studies in medicine and social sciences. It is referred to as the baseline
constraint in the book.

For the pulp experimexit, B =(n,1,,735, 7). Then, X is obtained by
dropping the second column of (1.31) and
B = (60.24, —0.18,0.38,0.44)". (1.45)

Again X (and respectxvely, XB) under 7, =0 is the same as Xp (and
respectively, XB) under T¥_;7,=0.

1.7 MULTIPLE COMPARISONS

Because different pairs (and sets) of treatments are beine comnared. this
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petween the ith and jth treatments in the one-way layout, it is common to
use the ¢ statistie: T

Yi—Yi. e (1.46)

L= F——
01/1/nj+1/ni

where y;. denotes the average of the n; observations fortreatment-i-and-¢ is —
the square root of the MSE from the ANOVA table (which is also called the
root-mean-square error, or RMSE). Note that the denominator in (1.46) is
the standard error of the numerator.

_Suppose that the null hypothesis Hy: 1, = --- = 7, is rejected. An imme-

- diate=question—is-to—determine-which—pairs—of-treatments are significantly

different. Using the fwo-sample t test, treatments { and j are declared
significantly different at level « if

ltijl >INak,ay2s (1.47)
where fy_; ., is the upper a/2 quantile of a ¢ distribution with N—k
degrees of freedom. This test is valid for testing one pair of treatments.

Suppose that k’ such tests are performed. It is easy to show that, under
H,, the probability of declaring at least one pair of treatments significantly
different (which is called the experimentwise error rate) exceeds a for k' > 1.
For larger k', the experimentwise error rate is higher. (Its proof is left as an
exercise.) Therefore, the standard ¢ test cannot be applied in the multiple
comparisons of treatments.

To control the experimentwise error rate, two methods are available: the
Bonferroni and the Tukey methods. They are convenient to use and have
known theoretical properties.

The Bonferroni Method . .___ .. ___ . .

The Bonferroni method for testing 7; = 7; versus 7; # 7; declares “r; differ-
ent from 7; at level a/k"” if

|51 > theie, a2 (1.48)

where k' denotes the number of pairs being tested. In the case of the
one-way layout with k& treatments,

q

k'=(§)=%k(k—1).

Denote the set of observed data that satisfy (1.48) by A4,;. From the distribu-
tion of the ¢ statistic,

a
Dunbf A 1o — Y 71 A0\
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For any pair (i, ), declare “r; different from 7;” if (1.48) for (i, j) is satisfied.

e nder-Hyiry = -0 =7,

Prob(at least one peif is declared signiﬁcantly different|H,)

- ‘—'Pt'Ob( IL<JJ AU 'HO] I§J PrOb{A IT K } (150)

Therefore, the probability of mistakenly declaring any pair of treatments
significantly different when they are not (i.., the experimentwise error rate)
is at most «. This method is very easy to use. It is conservative but works for
very general problems because the so-called Bonferroni inequality in (1.50) is
general. For the one-way layout, the Tukey method (to be introduced next) is
recommended. For multiple comparison problems for which the Tukey
method is not applicable, the Bonferroni method is recommended.

The method can also be adapted to construct conservative simultaneous
confidence intervals for the k' pairs of differences {r; — )i < j- Solving for

I}-’i-'—yj-— (7 - 7}) I <INk, a/zk'&v (1/”i + 1/”j) (1.51)

leads to the confidence interval for 7, — 7; as

Y= Yit ek, a e O/ /0 + 1/1;. (1.52)

That is, after identifying which pairs are different, the confidence interval in
(1.52) quantifies how different the two treatment effects are.

For the pulp experiment, the means for operators A—-D are 60.24, 60.06,
60.62, and 60.68, respectively. The ¢ statistics (1.46) are given in Table 1.5 for
the six pairs of treatments. For example, the A-vs.-B ¢ statistic is calculated

as

60.06 — 60.24 - 153
V0106 /1/5+1/5 (1.53)

Table 1.5 Multiple Comparison ¢ Statistics, Pulp Experiment
Avs. B Avs.C Avs.D Bvs.C - Bvs.D Cvs.D
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where 62=0.106 is from Table 1.4 and n,=n,=>5. Notice that for the
A-vs.-B comparison, the mean of A is subtracted from the mean of B-in
(1.53). This convention is followed throughout the book when the t statistic for a

girwise comparison is presented in a table. To apply the Bonferroni method in
(1.48) at level a=0.05, first compute the #y_y , 24 Vvalue, which is

16,0056 = 3008, o (1.54)

because N =20, k=4, and k' = 6. By comparing the ¢ values in Table 1.5
with 3.008, only the B-vs.-D comparison has a ¢ value that exceeds 3.008.
Therefore, only operators B and D are SIgmflcantly d1fferent at the 0.05

~ Jevel.

The Tukey Method

The only difference between the Tukey and Bonferroni methods is in the
choice of the critical value. The Tukey method is described as follows:
for any pair (i, j) with 1 <i <j <k, declare “r; different from 7,” if

1

151> 59k, w00 (1.55)

where ¢;; is defined in (1.46) and g »_,, , is the upper a quantile of the
Studentized range distribution with parameter & and N —k degrees of
freedom. Recall that k is the number of treatments. See Appendix E for the
Studentized range critical values. This method for equal sample sizes has
been widely used for many years. A proof that the procedure (1.55) works for
general n; and n;, ie., the experimentwise error rate is at most «, can be
found in Hochberg and Tamhane (1987). Details on the Studentized range
distribution-can-be found-in the-same-book:— -~

This method is known to be generally the most effectlve among conserva-
tive methods for the one-way ANOVA, that is, its Type II error is generally
the smallest (or equivalently, its confidence bound is the tightest). It is
recommended unless the critical value g; y_, , is not tabled.

For the balanced one-way layout (i.e., n; =n), the experimentwise error
rate for the Tukey method is exactly «. To prove this, note that

' Prob(at least one pair is declared significantly different|H,)

|7:.-5.] 1
= Prob| m — 1 oIH,
,J o‘f(l/n+1/n) \/qu’N kel 0)
max y;.~ min ;.
=Prob{ y 7 y >dq. v_v ~|Hn] =a. (1-56)
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The last equality in (1.56) holds because under H,

for“ﬁt‘hﬁﬁl’ aneOﬁS“ﬁ)'ﬁfiﬂ’e_Il_c—e_iﬁté_fV?aTs'fbi""7';- =T, are’

_Vn (max 3.~ min 3,.) /6

is the Studentized range statistic with parameters k and N —k.
_Bysolving S

I(yj ~%) = (5~ 1

= 759k, N-k,«
T a\/l/nj+1/n,~ ‘/Eqk’N k-

_ Gy — + — .
:t‘/‘z-qk,N—k,ao' w (1.57)

for all i and j pairs. Since the Bonferroni method is conservative, the
simultaneous confidence intervals based on the Tukey method are shorter.
For the pulp experiment, according to (1.55) at a = 0.05,

1 1 4.05
qu,N—k,0.0é = '\/744,16,0.05 = "‘/27

By comparing 2.86 with the ¢ values in Table 1.5, the Tukey method also
identifies that operators B and D are different. The 2.86 used here is smaller
than the 3.008 of the Bonferroni method because the Bonferroni method is
more conservative. For multiple comparisons at the 0.05 level, the two
methods reach the same conclusion, but the s1mu1taneous confldence lnter-

= 2.86.

. vals for the Tukey-method-are-shorter:—————~ -

1.8 QUANTITATIVE FACTORS AND ORTHOGONAL POLYNOMIALS

Mazumdar and Hoa (1995) performed an experiment which dealt with the
laser-assisted manufacturing of a thermoplastic composite. The experimental
factor is laser power at 40, 50, and 60 watts. The response is interply bond
strength of the composite as measured by a short-beam-shear test. The
strength data for the composite experiment are displayed in Table 1.6.

By treating the experimental design as a one-way layout, the ANOVA
table for the experiment is computed and given in Table 1.7. The p value for
the test of significance for the laser factor Prob(F,4 > 11.32) is 0.009, where
11.32 =112.09/9.90 is the observed F statistic value F,, . Thus, the experi-

ment nravideg strono evidence that lacer nower affecte the ctrenoth af the
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Table 1.6 Strength Data, Composite Experiment

e Laser-Power

40W 50w 60 W

25.66 29.15 35.73

28.00 35.09 39.56

20.65 29.79 _ 3566

Table 1.7 ANOVA Table, Composite Experiment

Degrees of Sum of Mean
--——Source— ~ -~ —Freedom— Squares —Squares —F—
laser 2 224184 112092 11.32
residual 6 59.422 9.904
total 8 283.606

its significance can be further studied by decomposing the sum of squares for
the laser factor (with two degrees of freedom) into a linear component and a
quadratic component.

Suppose that a factor is quantitative and has three levels with evenly
spaced values. For example, laser power in the composite experiment has
evenly spaced levels 40, 50, and 60. Then, one can investigate whether the
relationship between the factor and response is linear or quadratic over the
three levels. Denote the response value at the low, medium, and high levels
by y;» ¥2» and ys, respectively. Then the linear relationship can be evaluated
using

y3—y;=—1y;+ 0y, + 1ys,

which is called the linear contrast. To define é‘quad}atic effect, one can use
the following argument. If the relationship is linear, then y, —y, and y, —y,
should approximately be the same, ie., (y;—y,)—(y,~y,)=1y; — 2y, +
1y, should be close to zero. Otherwise, it should be large. Therefore, the
quadratic contrast

Y1—2y,+y;

can be used to investigate a quadratic relationship. The linear and quadratic
contrasts can be written as (—1,0,1)(yy, y,, y3)" and (1, —2,1)(y;, ¥5, y5)°
The coefficient vectors (—1,0,1) and (1, —2,1) are called the linear contrast
vector and the quadratic contrast vector. Two vectors u=(u,)} and v=(1,)}
are said to be orthogonal if their cross product uv? = T!_ u,0, = 0. It is easy
to verify that the linear and quadratic contrast vectors are orthogonal, ie.,
their cross product (—1,0,1X1, =2, )T =(- D@ + OX(-D+ (1N D= -1+
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contrasts and the tests based on them are statistically independent. To

_provide a consistent comparison of their regression coefficients, these vectors
should be scaled by their lengths, ie., V2 (=[(—1)?+02+12]¥2) and V6
(=[(—1)? + 22 +(=1)*1"/%), respectively. Thesé scaled vectors become the
covariates in the model matrix.

To see whether laser power has a linear and/or quadratic effect on

~ strength, the linear model with linear and quadratic contrasts [i.e., (—1,0,1)/

V2 for linear, (1, —2,1)/V6 for quadratic] can be fitted and their effects

_ tested for significance. Thus,

y = (25.66,29.15,35.73,28.00, 35.09, 39.56, 20.65, 29.79, 3566)T

and the model matrix X is

|
[uy
=

(1.58)

R ORRMOMREMO
!
[

4
fl
e N Y Sy O

whose second and third columns need to be divided by V2 and V6, respec-
tively. The formulas in (1.10) and (1.17) are used to calculate the estimates
and standard errors, which are given in Table 1.8 along with the correspond-
ing ¢ statistics. (The least squares estimate for the intercept is 31.0322.) The
results in Table 1.8 indicate that laser power has a strong linear effect but no

- quadratic effect on composite strength. While the ANOVA™in Table 1.7

indicates that laser power has a significant effect on composite strength, the
additional analysis in Table 1.8 identifies the linear effect of laser power as
the main contributor to the significance. ,

Suppose that the investigator of the composite experiment would like to
predict the composite strength for other settings of the laser power, such as
55 or 62 watts. In order to answer this question, we need to extend the notion
of orthogonal contrast vectors to orthogonal polynomials. Denote the three

Table 1.8 Tests for Polynomial Effects, Composite Experiment

S Standard
Estimate Error t.

Effect p value

linear 8.636 1.817 L 4.75 0.003

B
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evenly spaced levels by m — A, m, and m + A, where m denotes the middle

Jevel and A the distance between consecutive levels. Then define the first- —

and second-degree polynomials

x;m’
Py(x) =3[(x;m )2 2

Py(x) = (1.59)

3

It is easy to verify that P,(x)= —1,0,1 and P,(x)=1, —2,1 for x equal to
m— A, m, and m + A, respectively. These two polynomials are more general

" than the linear and quadratic contrast vectors because they are defined for a

whole range of the quantitative factor and give the same values as the
contrast vectors at the three levels of the factor where the experiment is
conducted. Based on P, and P,, we can use the following model for
predicting the y value at any x value in the range,

=By + BiPy(%) /VZ + B, Py(x) /VE + e,

where V2 and V6 are the scaling constants used for the linear and quadratic
contrast vectors and € are independent N (0, o %). Because the y values are
observed in the experiment only at x=m —A, m and m + A, the least
squares estimates of By, B;, and B, in (1.61) are the same as those using
regression analysis with the X matrix in (1.58).

For the composite experiment, fitting model (1.61) including the quadratic
effect (that was not significant) leads to the prediction model:

(1.61)

Predicted strength = 31.0322 + 8.636 P,(laser power) /v2

— 0.381P,(laser power) /6, (1.62)

where the estimated coefficients 8.636 and —0.381 are the same as in Table
1.8. The model in (1.62) can be used to predict the strength for laser power
settings in [40, 60] and its immediate vicinity. For example, at a laser power of
55 watts, : ' ’

55-50 1 1

P == =75  TFh5) =55 =035,

P,(55) =3[(551:)59)2~-§-} =3(%)2-2= —2,

and

1 -5

- _]. ey
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:50and A= 10 Therefore at 55 watts

icted strength = 31.0322 + 8.636(0.3536) — 0.381( ~0.5103)
—34.2803.

) to extrapolate £ far outside the experimental region [40, 60], where

may no longer hold, should be avoided.
venly spaced levels, orthogonal polynomials of degree 1,...,k—1
astructed. Orthogonal polynomials of degree 1-4 are given as

~m\(3k2-17

A ) 20 ’
) ( m)z 3k*—13 N

A 14
the distance between the levels of x, k is the total number of
'A;} are constants such that the polynomials have integer values.
of the orthogonal polynomials and values of the A; for k <7 are
pendix G. The value C in each column of the table in Appendix
's the sum of squares of the coefficients. The contrast vector
es are-the coefficients- in-the-column)-can-be-scaled-(i.e-;-divided)—
ssponding VC value so that the regression coefficients of the
sffects can be consistently compared.
el in (1.61) can be extended to a k-level factor by using higher
nomials. Polynomials with fourth and higher degrees, however,
e used unless they can be justified by a physical model. Data can

:«d by using a high-degree polynomial model but the resulting
 will lack predictive power. In regression analysis this phe-

3(k2—1)(k*-9)
560 g

J

r—' - - : e

RESIDUAL ANALYSIS: ASSESSMENT OF MODEL ASSUMPTIONS 35

models is to fit a low-degree polynomial over a small interval or region and

atch these polynomials together over the entire region to make it into a~

smooth function or surface.

1.9 RESIDUAL ANALYSIS: ASSESSMENT OF MODEL ASSUMPTIONS

Before making inferences using hypothesis testing and confidence intervals, it
is important to assess the model assumptions:

() Have all important effects been captured?
(i) Aré the erfors independent and normally distributed?
(iii) Do the errors have constant (the same) variance?

We can assess these assumptions graphically by looking at the residuals

=YY i=1,...,N,
where ¥;=X; B is the fitted (or predicted) response at x; and x; is the ith
row of the matrix X in 1.4). Writing r=(r)¥ , y=GIN ., §= (y,), = X8,

we have

r=y-y=y—XB. (1.63)
In the decomposition, y = § + r, ¥ represents information about the assumed
model, and r can reveal information about possible model violations.

Based on the model assumptions it can be shown (the proofs are left as
two exercises) that the residuals have the following properties:

(a)—E@)=10,— S
(b) rand § are independent, and
(¢) r~MN(, o1 —-H)), where I is the N X N identity matrix and

H=X(X"X) X’

is the so-called hat matrix since § = Hy, i.e., H puts the hat ~ on y.

v
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Figure 1.5. r; vs. §;, Pulp Experiment.

60.5

60.7

Violation of the properties in (a)—(c) would suggest where the model assump-
tions may be going wrong and how to use the following plots to detect them:

1. Plot r; versus $—The plot should appear as a parallel band [from
property (b)] centered about zero [from property (2)]. An example is
given in Figure 1.5 for the pulp experiment. If the spread of r; increases
as J; increases, it suggests that the error variance increases with the
mean. An example is given in Figure 1.6, which is not related to the
pulp experiment. Such a pattern would suggest that the response y

" needs to be transformed. Transformation of y will be considered in

Section 2.5.
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Figure 1.7. r; vs. x;, Pulp Experiment.

2. Plot r; versus x,—Property (c) suggests that the plot should appear as a
parallel band centered about zero. An example is given in Figure 1.7
for the pulp experiment. If there is a systematic pattern, it would
suggest that the relationship between x; and the response has not been
captured fully in the structural part of the model.

3. Plot r; versus time sequence i, where I is the time sequence in which
the observations were taken—The plot should be a parallel band
centered about zero. If there is a systematic pattern, it would suggest
that the observations are not independent and there is possibly correla-
tion over time.

4. Plot r; from replicates grouped by treatment—The spread of the

~ residuals should be the same for all treatments. Unequal spreads would
suggest that the error variance o2 also depends on the experimental
factor(s). An example is displayed in Figure 1.7 for the pulp experi-
ment; in this case, because only a single experimental factor was
studied, this plot is the same as the r; versus x; plot.

If there is a large number of replicates per treatment, a box-whisker plot
of the residuals for each treatment is recommended. A box-whisker plot
given in Figure 1.8 displays the minimum, 25th percentile, median, 75th
percentile, and maximum, where the box ends correspond to the 25th and
75th percentiles and the line inside the box is the median. Denote the 25th
percentile by Q;, the 75th percentile by Qj, and the interquartile range
Q5 — Q; by IQR. Then the two whiskers denote the minimum and maximum
values within the range [0, — 1.5 IOR. O. + 1.5 IOR]. Anv values outside the
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Figure 1.8. Box-Whisker Plot.

indicates one positive outlier and two negative outliers. If thefe are no
outliers, the minimum and maximum are used as the whiskers instead of
Q,— 1.5 IOR and Q; + 1.5 IQR. The box-whisker plot enables the' location,
dispersion, skewness, and extreme values of the replicated observa'flons to pe
displayed. Its use will be demonstrated later for the bolt experiment dis-
cussed in Section 2.3. .
The normality assumption of the errors can be assessed by the following
method. Let ry, < --- <r(y, denote the ordered residl%als. If the eIrors were
normally distributed, then the plot of the cumulatw_e probabilities Pi=
(i —0.5)/N versus the ordered residuals r; should ideally be S-sha.ped,
which is the shape of the normal cumulative distribution function as depicted
in Figure 1.9(2). The human eye has trouble recognizing departures fron.l a
curved line but can easily detect departures from a straight line. By stretching
the scale at both ends, the ideal curve becomes a straight line on the

(@) : N0

1.0- : 1.01
0.81 0.8
0.6 | 0.6
0.4- 0.41
/0.2- 0.2
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transformed scale, as shown in Figure 1.9(b). By plotting the ordered residu-

als on the transformed scale, any deviation of the plot from a straight line'is -

an indication of the violation of normality. This method is developed and
justified as follows. Suppose that the residuals r; are normally-distributed - -
with the same variance (which is true for most balanced designs considered in
the book.) Then, ®(r;) has a uniform distribution over [0, 1]. This implies that

the expected values of @(r(ii), i=1,..., N, are spaced uniformly over [0;1], =~ -

ie., the N points (p;, ®(r)), p;= (i —0.5)/N, should fall on a straight line.
By applying the ®~! transformation to the horizontal and vertical scales, the
N points

which form the normal probability plot of residuals, should plot roughly as a
straight line. (Its rigorous justification can be found in Meeker and Escobar,
1998.) A marked deviation of the plot from a straight line would indicate that
the normality or constant variance assumptions for the errors do not hold.
The normal probability plot can also be used for quantities other than the
residuals. A major application is in factorial designs, where the 7, in (1.64)
are replaced by ordered factorial effect estimates. (See Section 3.9.)

For the pulp experiment, the r; vs. §; and r; vs. x; plots are displayed in
Figures 1.5 and 1.7. No patterns are evident in these plots. Moreover, the
normal probability plot in Figure 1.10 appears close to a straight line. Thus,
the residuals are consistent with the model assumptions. An unusually large
residual would suggest that the associated observation may be an outlier. An
outlier is an indication of model inadequacy, or suggests that something
peculiar happened to the experimental run for the associated observation.

For more details on residual analysis, see Draper and Smith (1998).

02 04 06

residual

0.0

-04 -0.2
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110 PRACTICAL SUMMARY

Experimental problems can be divided into five broad categories:

EXERCISES 41

10. One-way layout (comparison of treatments with no blocking):

(i) Use model (1.30) with either of the constraints Tr; =0 (zero

sum) or 7, =0 (baseline). Interpretation of the 7 for each

constraint can be found in Section 1.6.
(ii) Use the ANOVA table in Table 1.3 and the F test in (1.38) for

testing the null hypothesis: 7, = 7, = -+ = 7,.

(iii) If the null hypothesis is rejected, multiple combénsons of the

7;’s should be considered. The Tukey method in (1.55) is recom-
mended. The Bonferroni method in (1.48) can be used in very
general situations. It is recommended in situations where the
___critical values for the Tukey method are not available.

1.
(i) treatment comparisons,
(ii) variable screening,
--————(jii) —response surface-exploration, - - -
(iv) system optimization,
e (v) ‘system robustness.

2. Statistical process control tools such as control charts are often used
to monitor and improve a process. If a process is stable but needs to
be further improved, more active intervention like experimentation
should be employed.

3. There are seven steps in the planning and implementation of experi-
ments:

(i) state objective,
(i) choose response,
(iii) choose factors and levels,
(iv) choose experimental plan,
(v) perform the experiment,
(vi) analyze the data,
(vii) draw conclusions and make recommendations.
4. Guidelines for choosing the response:
(i) It should help understand the mechanisms. and physxcal laws
involved in the problem. :
(ii) A continuous response is preferred to a discrete response.
(iii) A good measurement system should be in place to measure the

: response.

5. For response optimization, there are three types of responses: nomi-
nal-the-best, larger-the-better, and smaller-the-better.

6. A cause-and-effect diagram or a flowchart should be used to facilitate
the identification of potentially important factors and to provide a
system view of the problem.

7. Three fundamental principles need to be considered in experimental
design: replication, randomization, and blocking. Blocking is effective
if the within-block variation is much smaller than the between-block
variation.

8. Factors can be designated as E (experimental), B (blocking), O (con-

stant level), and R (randomization).

A summary of linear model theory is given in Section 1.4 as the
fonmdation for recrescinn analucic need in. the hank. Variahle selection

11. For a quantitative factor, use orthogonal polynomials to further model
the main effect of the factor. First- and second-degree polynomials are
commonly used. Fourth- and higher degree polynomials are rarely
used because of the problems associated with overfitting and interpre-
tation.

12. For checking the model assumptions, use the following residual plots:

(i plot r; versus J,

(i) plot r; versus x;,

(iii) plot r; versus time sequence i,

(iv) plot r; from replicates grouped by treatment.
If any of these plots shows a systematic pattern, one or more of the
model assumptions are violated. Countermeasures as described in
Section 1.9 should be taken. If there is a large number of replicates
per treatment, a box-whisker plot is recommended. It enables the
location, dispersion, skewness, and extreme values of the replicated
observations to be visually compared.

EXERCISES
1. Use a real example to illustrate the seven-step procedure in Section 1.2.

2. Use two examples, one from manufacturing and another from service, to

illustrate the construction of the cause-and-effect diagram. Designate

each factor on the diagram as E, B, O, or R. .

3. Give examples of hard-to-change factors. How do you reconcile the
hard-to-change nature of the factor with the need for randomization?

4. (a) For the typing experiment considered in Section 1.3, use a statistical
model to quantify the gains from using randomization (as illustrated
in the second sequence) and from using balance in addition to
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(b) _Suppose that the following sequence is obtained from using bal-

.- anced randomization:
1A4,B, 2.A,B, 3. A,B, 4. B,A, 5.B,A, 6.B,A.

Would you use it for the study? If not, what would you do? What
“aspect of the sequence makes you uneasy? Can you relate it to the
possibility that the advantage of the learning effect may diminish
over time and express it in more rigorous terms? (Hint: The terms
in the model should represent the effects you identified as poten-
tially influencing the comparison.)

5. The typing experiment can be further improved by employing more
typists that are representative of the population of typists. Suppose three
typists are chosen for the study. Devise an experimental plan and discuss
its pros and cons. (Some of the more elaborate plans may involve
strategies that will be introduced in the next chapter.)

6. For the pulp experiment obtain the 95% simultaneous confidence inter-
vals for the six pairs of treatment differences using the Bonferroni
method and the Tukey method. Which gives shorter intervals?

7. (@) For the pulp experiment show that neither the Bonferroni nor the
Tukey method declares any pair of treatments as different at the

0.01 level. :

() How do you reconcile the finding in (a) with the result in Section
1.6 that the F test rejects the null hypothesis H; at the 0.05 level?

After rejecting the null hypothesis, do you expect the multiple
comparison method to identify at least one pair of treatments as

different?-(Hint:-One-is—at-the-0:011evel-while-the-otheris-at-the-

0.05 level.)

(¢) Recall that the p value for the observed F statistic value 4.20 is
0.02. How can you use this fact to reach the same conclusion in (a)
without actually performing the multiple comparisons? (Hint: Use

the relationship between the p value and the significance level of

the F test.)

8. Make various residual plots for the composite experiment data to sup-
port the finding in Table 1.8 that the linear effect is significant while the

quadratic effect is not.

9. Use the prediction model in (1.62) to predict the composite strength at
62 watts. If it is suggested to you that the model be used to predict the
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10. Prove that E(r) =G and that the covariance matrix between r and ¥ y is
zero, i.e., r and ¥ are independent. —

11. Show that r ~ MN(0, o-*>(I — H)), where I is the NXN identity matrix -

and H=XXTX)"1X7.

12. Prove that under H, in (1.37) the probability of declaring at least one

pair of treatments significantly different, based on (1.47), exceeds a for
k' >1 and increases as k' increases. (Hint: Write the event in (1.47) as
C;; and express the rejection region as a union of the C;/’s)

13 If the plot of remduals against time exhibits a quadratlc trend (gomg up

and then going down), what does it suggest to you regarding the model
currently entertained and what remedial measures would you take?

14. In order to analyze possible differences between five treatments, a
one-way layout experiment was carried out. Each of the treatments was
tested on three machines, resulting in a total of 15 experimental runs.
After fitting the one-way model (1.30) (which has no block effect) to the
data, the residuals were plotted against machine number, as shown in
Figure 1.11. What do you learn from the plot? How would you modify
your model and analysis?

15. The bioactivity of four different drugs A4, B,C, D for treating a particu-
lar illness was compared in a study and the following ANOVA table was

residual i
0 10 20

-10

-20

1 2 D 3
machine
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given for the data:

Sum of Degrees of Mean
‘Source” T T Squares Freedom Square
between treatments 64.42 3 21.47
____within treatments ~ 62.12 .26 2.39
total 126.54 29

(a) Describe a proper design of the experiment to allow valid infer-
ences to be made from the data.

(b) Use an F test to test at the 0.01 level the null hypothesis that the
four treatments have the same bioactivity. Compute the p value of
the observed F statistic.

(¢) The treatment averages are as follows: y,=66.10 (7 samples),

J5 = 65.75 (8 samples), j. = 62.63 (9 samples), 3, = 63.85 (6 sam-
ples). Use the Tukey method to perform multiple comparisons of
the four treatments at the 0.01 level.

It turns out that 4 and B are brand-name drugs and C and D are
generic drugs. To compare brand-name vs. generic drugs, the con-
trast 3(3, +75) — 3(¥c +¥p) is computed. Obtain the p value of the
computed contrast and test its significance at the 0.01 level. Com-
ment on the difference between brand-name and generic drugs.

(@

16. In the winter, a plastic rain gauge cannot be used to collect precipitation

data because it will freeze and crack. As a way to record snowfall,
weather observers were instructed to collect the snow in a metal standard
2.5 can, allow the snow to melt indoors, pour it into a plastic rain gauge,
and then record the measurement. An estimate of the snowfall is then
obtained by multiplying the measurement by 0.44. (The factor 0.44 was_
theoretically derived as the ratio of the surface area of the rectangular
opening of the rain gauge and of the circular metal can.) One observer
questioned the validity of the 0.44 factor for estimating snowfall. Over
one summer, the observer recorded the following rainfall data collected
in the rain gauge and in the standard 2.5 can, both of which were
mounted next to each other at the same height. The data (courtesy of
Masaru Hamada) appear in Table 1.9, where the first column is the
amount of rain collected in the standard 2.5 can (x) and the second
column is the amount of rain collected in-the rain gauge (y).

(a) Plot the residuals y;—0.44x; for the data. Do you observe any
systematic pattern to question the validity of the formula y = 0.44x?
Use regression analysis to analyze the data in Table 1.9 by assuming
a general B, (i.e., an intercept term) and B,=0 (ie., regression
line through the origin). How well do the two models fit the data? Te

(b)

et
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Table 1.9 Rainfall Data
x y * Y- x y

0.11 0.05 2.15 0.96 o125 . 062
1.08 0.50 0.53 032 0.46 023
1.16 0.54 5.20 2.25 031 0.17
275 131 0.00 0.06 075 033
0.12 0.07 1.17 0.60 2.55
0.60 0.28 6.67 3.10 1.00 0.43
1.55 0.73 0.04 0.04 3.98 1.77
1.00 0.46 222 1.00 1.26 0.58
0.61 0.35 0.05 0.05 5.40 2.34

318140015 6:09—— 1.02 —0.50
2.16 0.91 0.41 0.25 375 1.62
1.82 0.86 145 0.70 3.70 1.70
4.75 2.05 0.22 0.12 0.30 0.14
1.05 0.58 222 1.00 0.07 0.06
0.92 041 0.70 0.38 0.58 0.31
0.86 0.40 2.73 1.63 0.72 0.35
0.24 0.14 0.02 0.02 0.63 0.29
0.01 0.03 0.18 0.09 1.55 0.73
0.51 0.25 0.27 0.14 247 1.23

Note: x=amount of rain collected in metal can, y =amount of rain collected in plastic gauge.

17.

18.

(c) Because of evaporation during the summer and the can being made
of metal, the formula y=0.44x may not fit the rainfall data
collected in the summer. An argument can be made that supports
the model with an intercept. Is this supported by your analyses in
(a) and (b)?

Analyze the mandrel portion of the torque data in Table 2.8 by treating it
as a one-way layout. Your analysis should include ANOVA, residual
analysis, and multiple comparisons of the three plating methods.

Data from a one-way layout are given in Table 1.10. The response is the
muzzle velocity of mortar-like antipersonnel weapon. The quantitative
factor is the discharge hole area (in inches), which has four levels in the
experiment. An inverse relationship between muzzle velocity and dis-
charge hole area was expected because a smaller hole would increase the
pressure pulse of the propellant gases. Analyze the data in two ways: (i)
by treating it as a one-way layout and using an F test and multiple
comparisons, (ii) by using orthogonal polynomials to model the linear and
quadratic effects. (Note: These data are obtained bv collapsing and

7
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Table 1.10 Adapted Muzzle Velocity Data

Discharge Hole Area

0016 0030 0044 0.058

294.9 295.0 270.5 258.6

294.1 301.1 2632 255.9

. 3017 293.1 _ 27186 2511
: 307.9 300.6 267.9 263.6
285.5 285.0 269.6 262.6

R 298.6 289.1 269.1 260.3
: 303.1 277.8 2622 305.3

305.3 266.4 2632 304.9

& 2649 U8 2242 260

6 262.9 255.7 2279 216.0
o 256.0 245.7 217.7 2106
8l 255.3 251.0 219.6 207.4
i 256.3 254.9 228.5 214.6
258.2 254.5 230.9 2143

243.6 246.3 227.6 222.1

250.1 246.9 228.6 2222

19. In tree crop spraying, an airblast sprayer was used with and without an
air oscillator on grapefruit and orange trees in an experiment to evaluate
the delivery of a solution. Data for the four treatments (grapefruit trees
with oscillator, grapefruit trees without oscillator, orange trees with
oscillator, orange trees without oscillator) consisted of 72 observations.
The corresponding sample means and sample standard deviations of the
solution deposited in nanograms per square centimeter (ng/cm?) appear
in Table 1.11.

(a) _Analyze the data as a one-way layout by constructing the corre-

sponding ANOVA table. Are there significant differences between
the treatments? (Hint: The mean-squared error can be calculated
by pooling the sample variances and the treatment sum of squares
can be determined from the sample means.)
(b) The analysis in (a) assumes the error variance does not depend on
_the particular treatment. Are the data consistent with this assump-
tion?

Table 1.11 Summary Data, Airsprayer Experiment

Standard
Treatment Mean Deviation
grapefruit trees with oscillator 514 ' 330

oranee trees with oscillator 430 360
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